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Monitoring and Control of Crystallisation
Processes - Motivation

 Many technology and economic drivers 

 70% of all solid products & 90% of APIs 
involve a crystallization step

 Control of crystal properties important
 Efficient downstream operations (filtration, drying)

 Product effectiveness (tablet stability, bio-availability)

 Strict regulatory requirements related to 
variation of quality 

 High economic penalty of producing off-
spec product (£1-2 million/batch)

 Quality-by-design, fast scale up and 
product consistency
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Continuous Crystallisation

 Has been identified as a key paradigm shift with high 
potential of improving pharmaceutical production [1]

 Continuous processing has the advantages:

– Consistency in product quality

– Reduction of cost by asset utilization

– Shorter down time

– Ease of scale up

– Achieve operating conditions unattainable in batch processes

 Continuous processing is impossible without suitable 
control strategies

[1] Chen et al., Cryst. Growth Des., 2011, 11, 887-895
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New generation of integrated, intensified & intelligent crystallization systems 
with drastically improved flexibility, predictability, stability & controllability.

New generation of integrated, intensified & intelligent crystallization systems 
with drastically improved flexibility, predictability, stability & controllability.

• Seed addition

• Cooling profile

• Antisolvent

• Growth/nucleation 
modifiers

Manipulated inputs:

Key role of monitoring and control in process intensification 
and integration

Plant-wide 
PRINS

 Integrated, intensified & reconfigurable plant

 Batch versus continuous manufacturing
Nagy&Braatz, Handbook of Ind. Cryst., 2012;  Nagy&Braatz, Annu. Rev. Chem. Biomol. Eng., 2012 

CrySys
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Crystallization product engineering via 
real-time feedback control

. . . 

Composite PAT array

... 

 Continuous real-time monitoring

 Full characterisation of crystallisation state in the phase diagram using CPA

 Complementarity & redundancy in measurements  robust control

 Automated/adaptive operation to design particles with tailored made properties

 Model-based and model-free crystallization design & control approaches

Automated Intelligent 
Decision Support and 

Control System

Real-time control

CryPRINS

RAMANFBRM

PVM
ATR-

UV/Vis, 
FTIR
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Image analysis (IA) for monitoring polymorphic 
transformation of OABA
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 Form 1 and 2 monitored 
using fingerprint regions

 Nucleation of form 2 and 
transformation into form 1 
is monitored
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In situ fine removal via controlled dissolution
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Uni-modal CSD 
achievable ONLY by using 

controlled dissolution

Uni-modal CSD 
achievable ONLY by using 

controlled dissolution

 Optimal temperature includes 
heating stage

 Use of controlled dissolution for 
programmed fine removal

 Fine removal via control rather 
than equipment design

 Suitable control strategy can 
eliminate design limitations

 Model-free approach: DNC
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Continuous plug flow crystallizer with controlled 
dissolution segments

T

Length

 Spatially distributed operating profile (heating/cooling or antisolvent/solvent)

 Alternating nucleation-growth-dissolution segments
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PBM of the Continuous Plug Flow Crystallizer

Steady state model equations
 Population balance equation (PBE) is used 

to model the crystallization process

 Steady state PBE for growth and nucleation

	
; 		 0

 PBE for dissolution

	
0; 		 0

 Kinetics

1 ;

;

; 	
 Mass balance

					 3

16

High resolution technique for solving PBEs
• Efficient, accurate and captures discontinuity

• Define the cell average in each cell

					
1
Δ

		;	
	

• The PBE becomes a set of ODEs 

1
Δ 	

;	

/ / /

• Flux reconstruction in cell boundary

1
2

• van Leer flux limiter to remove oscillation near 
discontinuity

1
;			

/
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Optimization Problem: CSD shaping 
in continuous crystallisation

 Temperature profile along the crystallizer with dissolution for fine removal

 Objective function to be minimized:

min	 J , ,
2 ;	

 Gradient based methods are often caught in local minima due to high 
nonlinearity of the problem

 A stochastic technique genetic algorithm (GA) is used to solve the 
optimization problem

 Allows also to optimize number of segments needed  MINLP

 Combined design and control of crystallisation processes

Predicted CSDTarget CSD
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Spatially distributed control of product CSD 
with fines removal
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Spatial evolution of CSD
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Spatial operating profile in the phase diagram
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 Dissolution rate is also 
manipulated

 For poorly soluble compounds 
large under-saturation needed
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Effect of additives on nucleation and crystal shape 
of Paracetamol

 Significant increase in aspect ratio

 Influence on both CSD and shape
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Multi-dimensional PBM with the effect of 
impurities/additives (growth modifiers)

 "Poisoning effect" of impurities  growth reduction (unsteady-state adsorption)   

KDP grown in the presence of Fe3+ (Terry et al. Nature, 1999)

 Step velocity decreases with time leading to degradation of crystal surface
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Hybrid Continuous-batch crystallisation setup for shape 
distribution control using additives (growth modifiers)

PVM
(or on-line imaging 

system)

Thermocouple

Controller

Thermostat

Growth Modifier

Fresh 
Solution

Solution with 
additive

 Control Mean Aspect 
Ratio (MAR)

 2D CSD measured in-situ 
or on-line

 Manipulate additive 
concentration

 Flow through system with 
constant volume

 Continuous operation for 
liquid phase (can 
dynamically manipulate 
GM concentration) 

 Batch operation for solidFilter
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Dynamic GM feedback control of mean aspect ratio

Mean aspect ratio=2.1
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 Hybrid operation allows dynamic manipulation of GM concentration

 Mean aspect ration significantly reduced (30%)

 GM concentration high during middle of batch but very low at the end 
(no contamination of product)
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Summary

 Many economic drivers for better control of CSD and shape

 Concept of composite sensor array (CSA) and CryPRINS allow 
continuous and real-time full characterisation of the crystallisation

 Model based optimal control and design can significantly improve the 
pharmaceutical production process

 Novel control approach for continuous crystallisation with spatially 
distributed  controlled dissolution for fine removal

 Shape distribution control using GM and hybrid continuous-batch 
crystallisation operation

Thank You


