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Monitoring and Control of Crystallisation
Processes - Motivation

 Many technology and economic drivers 

 70% of all solid products & 90% of APIs 
involve a crystallization step

 Control of crystal properties important
 Efficient downstream operations (filtration, drying)

 Product effectiveness (tablet stability, bio-availability)

 Strict regulatory requirements related to 
variation of quality 

 High economic penalty of producing off-
spec product (£1-2 million/batch)

 Quality-by-design, fast scale up and 
product consistency



3

5

Continuous Crystallisation

 Has been identified as a key paradigm shift with high 
potential of improving pharmaceutical production [1]

 Continuous processing has the advantages:

– Consistency in product quality

– Reduction of cost by asset utilization

– Shorter down time

– Ease of scale up

– Achieve operating conditions unattainable in batch processes

 Continuous processing is impossible without suitable 
control strategies

[1] Chen et al., Cryst. Growth Des., 2011, 11, 887-895
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New generation of integrated, intensified & intelligent crystallization systems 
with drastically improved flexibility, predictability, stability & controllability.

New generation of integrated, intensified & intelligent crystallization systems 
with drastically improved flexibility, predictability, stability & controllability.

• Seed addition

• Cooling profile

• Antisolvent

• Growth/nucleation 
modifiers

Manipulated inputs:

Key role of monitoring and control in process intensification 
and integration

Plant-wide 
PRINS

 Integrated, intensified & reconfigurable plant

 Batch versus continuous manufacturing
Nagy&Braatz, Handbook of Ind. Cryst., 2012;  Nagy&Braatz, Annu. Rev. Chem. Biomol. Eng., 2012 

CrySys
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Crystallization product engineering via 
real-time feedback control

. . . 

Composite PAT array

... 

 Continuous real-time monitoring

 Full characterisation of crystallisation state in the phase diagram using CPA

 Complementarity & redundancy in measurements  robust control

 Automated/adaptive operation to design particles with tailored made properties

 Model-based and model-free crystallization design & control approaches

Automated Intelligent 
Decision Support and 

Control System

Real-time control

CryPRINS

RAMANFBRM

PVM
ATR-

UV/Vis, 
FTIR
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due to polymorphic 
transformation 

 Solubility difference 
between polymorphs
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Image analysis (IA) for monitoring polymorphic 
transformation of OABA
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 Form 1 and 2 monitored 
using fingerprint regions

 Nucleation of form 2 and 
transformation into form 1 
is monitored
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In situ fine removal via controlled dissolution
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Uni-modal CSD 
achievable ONLY by using 

controlled dissolution

Uni-modal CSD 
achievable ONLY by using 

controlled dissolution

 Optimal temperature includes 
heating stage

 Use of controlled dissolution for 
programmed fine removal

 Fine removal via control rather 
than equipment design

 Suitable control strategy can 
eliminate design limitations

 Model-free approach: DNC
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Continuous plug flow crystallizer with controlled 
dissolution segments

T

Length

 Spatially distributed operating profile (heating/cooling or antisolvent/solvent)

 Alternating nucleation-growth-dissolution segments

16

PBM of the Continuous Plug Flow Crystallizer

Steady state model equations
 Population balance equation (PBE) is used 

to model the crystallization process

 Steady state PBE for growth and nucleation

௫ݑ
డ௡

డ௫	
൅

డீ௡

డ௅
ൌ ߜܤ ܮ െ ଴ܮ ; 		ܵ ൒ 0

 PBE for dissolution

௫ݑ
߲݊
	ݔ߲

െ
݊ܦ߲
ܮ߲

ൌ 0; 		ܵ ൏ 0

 Kinetics

ܩ ݐ ൌ ݇௚ܵ௚ 1 ൅ ܮߛ ௣;

ܦ ݐ ൌ
݇ௗ
௤ܮ
ሺെܵሻௗ;

ܤ ൌ ݇௕ܵ௕; 	ܵ ൌ ܥ െ ௦௔௧ܥ
 Mass balance

௫ݑ					
ܥ݀
ݔ݀

ൌ െ3ߩ௦݇௩׬ܩ ܮଶ݊݀ܮ
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High resolution technique for solving PBEs
• Efficient, accurate and captures discontinuity

• Define the cell average in each cell
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Optimization Problem: CSD shaping 
in continuous crystallisation

 Temperature profile along the crystallizer with dissolution for fine removal

 Objective function to be minimized:

min
்ሺ௞ሻ

	 J ൌ෍ߣ௜ሺ ௩݂,௜
௧

ே

௜ୀଵ

െ ௩݂,௜ሻ2 ;	

 Gradient based methods are often caught in local minima due to high 
nonlinearity of the problem

 A stochastic technique genetic algorithm (GA) is used to solve the 
optimization problem

 Allows also to optimize number of segments needed  MINLP

 Combined design and control of crystallisation processes

Predicted CSDTarget CSD
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Spatially distributed control of product CSD 
with fines removal
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Spatial evolution of CSD
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 The optimal profile alternates between growth and dissolution to 
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Optimal temperature profile 
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Spatial operating profile in the phase diagram
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 Dissolution rate is also 
manipulated

 For poorly soluble compounds 
large under-saturation needed
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Effect of additives on nucleation and crystal shape 
of Paracetamol

 Significant increase in aspect ratio

 Influence on both CSD and shape
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Multi-dimensional PBM with the effect of 
impurities/additives (growth modifiers)

 "Poisoning effect" of impurities  growth reduction (unsteady-state adsorption)   

KDP grown in the presence of Fe3+ (Terry et al. Nature, 1999)

 Step velocity decreases with time leading to degradation of crystal surface
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Hybrid Continuous-batch crystallisation setup for shape 
distribution control using additives (growth modifiers)

PVM
(or on-line imaging 

system)

Thermocouple

Controller

Thermostat

Growth Modifier

Fresh 
Solution

Solution with 
additive

 Control Mean Aspect 
Ratio (MAR)

 2D CSD measured in-situ 
or on-line

 Manipulate additive 
concentration

 Flow through system with 
constant volume

 Continuous operation for 
liquid phase (can 
dynamically manipulate 
GM concentration) 

 Batch operation for solidFilter
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Dynamic GM feedback control of mean aspect ratio
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 Hybrid operation allows dynamic manipulation of GM concentration

 Mean aspect ration significantly reduced (30%)

 GM concentration high during middle of batch but very low at the end 
(no contamination of product)
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Summary

 Many economic drivers for better control of CSD and shape

 Concept of composite sensor array (CSA) and CryPRINS allow 
continuous and real-time full characterisation of the crystallisation

 Model based optimal control and design can significantly improve the 
pharmaceutical production process

 Novel control approach for continuous crystallisation with spatially 
distributed  controlled dissolution for fine removal

 Shape distribution control using GM and hybrid continuous-batch 
crystallisation operation

Thank You


