

EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation

Engineering and Physical Sciences Research Council

Discovery And Continuous Production Of α-Lipoic Acid Co-crystals In A Oscillatory Baffled Crystalliser

Lihua Zhao, Vishal Raval, Naomi Briggs, Alastair J. Florence

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow

1. Introduction

Advantages of co-crystals:

Modify physical-chemical properties

2. Objectives and scope

- Find suitable co-formers for α-Lipoic Acid (ALA) to produce novel co-crystals to improve chemical stability
- Characterise co-crystal(s)

3. Model compound

of molecular solids such as stability

and solubility; Generate new IP

Challenges:

- Difficult to scale-up due to multi
 - component system

4.Small scale co-crystallisation trials

Choose co-formers 0-H···· 0 0-H···· 0

Small scale trials utilised:

- Liquid-assisted grinding
- Cooling /evaporative crystallisation in 5 mL vials

Outcome: Novel ALA:nicotinamide co-crystals obtained

- Scale-up the co-crystallisation process (5mL [0.3g] → 500mL [30g])
- Develop a continuous crystallisation using a continuous oscillatory baffled reactor (COBC) for production of cocrystals (details below [>1kg])

5. Analysis

 Novel co-crystal forms identified using:

- XRPD, single crystal diffraction
- DSC/TGA
- FT-IR
- H¹NMR
- Microscope/SEM
- Stability tested by DSC and HPLC

New form is a *thermally stable*, 1:1 cocrystal of ALA and nicotinamide.

- Nutraceutical compound
- Chemically unstable on exposure to heat and light, prone to polymerisation

Viscous polymer solution from commercial ALA sample

6. Crystal structure

7. Scale – up co-crystallisation process

Scale-up in a batch OBC

- Co-crystallisation process scaled–up in a 500 mL batch OBC to identify:
- Suitable solvent system
- Cooling profile

Keyparametersforcontinuousprocess(oscillationintensity/concentration)

8. Stability & Solubility of Co-crystals

DSC of ALA plus ALA nicotinamide co-crystal. Thermal cycling highlights stability of co-crystal

9. Conclusions

 ALA:nicotinamide co-crystals discovered and characterised.

HPLC analysis:

	Original purity	After 30 minutes		Solubility
		at 60°C	30°C	
ALA	99%	61%	18%	2 mg/mL /
Co-crystal	99%	99%	99%	10 mg/mL

- Co-crystal composition confirmed via solution NMR plus single crystal XRD structure determination.
- Significant improvement in ALA thermal stability and solubility achieved via co-crystal formation.
- Effective demonstration of scale-up of co-crystallisation process from 0.3g (vial) \rightarrow 30g (OBC) \rightarrow 1kg (COBC).
- Good purity and size distribution achieved in the continuous cooling crystallisation process within the COBC.

Acknowledgement: the authors thank the EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and crystallisation (<u>www.cmac.ac.uk</u>) for supporting the work EPSRC for funding under grant ref: EP/I033459/1.