

Exploring Alternative Product-Process Supply Network Models in Pharma

Dr Jagjit Singh Srai University of Cambridge

13-09-12

Engineering and Physical Science Research Council

Cambridge - Strathclyde Team

- Dr Jag Srai
- Dr Tomas Harrington
- Leila Alinaghian

- Prof Umit Bititci
- Dr Aylin Ates
- Rajan Talati

Industry Team contributors

- AstraZeneca
- Genzyme
- GSK
- Novartis

Project Objectives

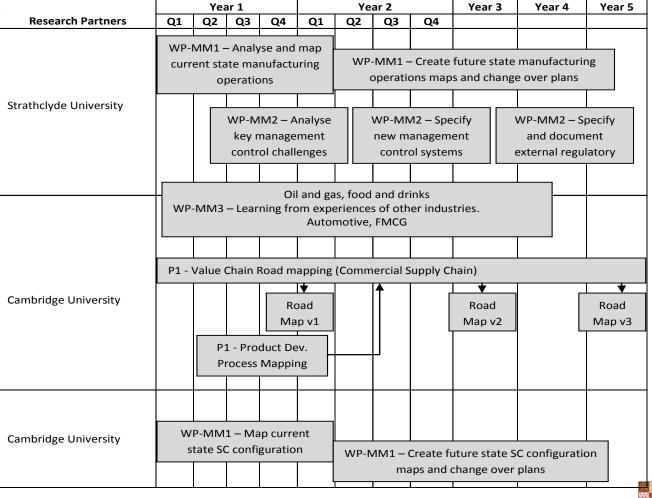
- Identify barriers and enablers for Continuous Manufacturing
- Identify the challenges of CM for manufacturing operations and upstream and down-stream supply chains
 - WP1: Architectural differences between current ad future manufacturing operations management and supply chain configurations, structures, processes and systems
 - WP2: Analyse key management control challenges and develop appropriate management control processes and capabilities to facilitate effective and efficient management of CM
 - WP3: Learning from experiences of other industries that have transformed from batch to flow based continuous production.
- Exploring alternative value chain configuration roadmaps

Agenda

- Project Scope
- Evidence from the Literature
- Barriers & Enablers
- Investigative Approach
- Initial Findings
- Opportunities Pharma feedback
- Opportunities Other industries
- Next Steps

Project scope

- Not simply about batch to continuous processing?
- More about alternative product-process supply network options and value chain implications?
 - product variety, consistency and functionality
 - energy and resource efficiency
 - capital investment, solvent use, no. of process steps
 - Inventory, minimum 'lot' size, customisation options
- Exemplars from other sectors who have reconfigured their manufacturing operations to support more dynamic supply models


If M Centre for International Manufacturing

High Level Work Plan

INInternational Manufacturing

Centre for

Agenda

- Project Scope
- Evidence from the Literature
- Barriers & Enablers
- Investigative Approach
- Initial Findings
- Opportunities Pharma feedback
- Opportunities Other industries
- Next Steps

EPSRC Engineering and Physical Sciences Research Council

Authors	Drivers of Continuous Manufacturing
[2], [3], [6], [11], [12], [13], [14], [15], [17]*, [18], [19], [20], [21], [22], [24], [25], [26]	Cost Capital investment
[2], [3], [4], [5], [6], [12], [14], [15], [18], [19], [21], [22], [24], [26]	 Continuous manufacturing allows the use of smaller production facilities with lower capital and operational cost, with a reduced overall plant footprint. Operating Costs
[2], [5], [10], [12], [17]*, [24], [26]	 Less labour required to operate the processes Continuous process is capable of increasing asset utilisation Inventory Continuous manufacturing has potential for reducing inventory cost (Less WIP inventory, Reduced material handling and transport , Continuous flow of material)
[2], [3], [13], [14], [15], [16], [20], [22], [24]	 Quality Improves process control CM system is considered to be integration of quality and compliance system. Product yield and quality will be better in CM compared to batch process. – Higher purity Less product rejects The continuous manufacturing enables monitoring of drug quality on a continuous basis rather than through post-production, batch-based testing.
[2], [3], [12], [14], [15], [21], [22], [24], [25], [26]	Delivery- dependability Continuous process enhances process reliability
[3], [14], [15], [22], [24], [25]	 Speed Strategic Continuous manufacturing accelerates the introduction of new drugs through efficient production processes Continuous process reduces the time to market Continuous process is capable of reducing the cycle time Operational Continuous process is highly capable of minimizing total reaction time through better temperature control compared to batch process. No Scale-up development is necessary in continuous manufacturing, as the early clinical batches are produced using exactly the same equipment as the large production batches.
✓ International Manufacturing	STANDERID

Authors	Drivers of Continuous Manufacturing
[2],[5], [8], [10], [11], [15], [20], [22] [11], [19], [22], [24]	Flexibility Process flexibility • Different degree of flexibility to change the product mix (product flexibility) • Different degree of flexibility to react to changes in demand (volume flexibility)
[2], [3], [12], [14], [15], [21], [22], [24], [25], [26]	Sustainability Environmental Continuous manufacturing minimizes waste, energy consumption and raw material use. Solvent can be recycling more effectively in continuous process compared to batch process.

Batch Processing

Advantages:

- Flexible can use equipment for multiple drugs
- Capacity Management straightforward
- 'Batch' signature for traceability
- Well established process, understood, with installed capacity

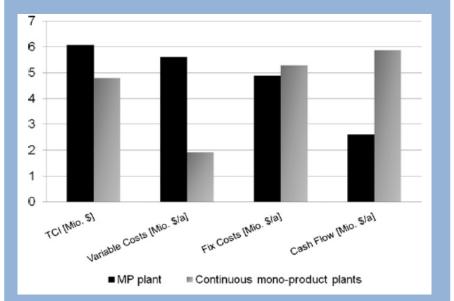
Disadvantages:

- Long throughput times, with constrained volume flexibility
- Product-quality testing can be time consuming
- Multi-step batch processing common; waiting times between process steps
- High inventories
- Capital intensive

If

Drivers of Continuous Manufacturing

	Economic Drivers	 Reduce cycle time and footprint Less WIP inventories Lower CAPEX & Operating Cost Integration of quality & compliance Increased speed to market Better product yield 	
1	Process Drivers	 Consistency and high quality Elimination of scale-up Lower catalyst and solvent use Less waste through solvent recycling Minimize total reaction time through better temperature control Effective running and scale-up of exothermic reactions without special equipment/ additional precautions 	UNIVERSITY OF CAMBRIDGE



International Manufacturing

ECONOMIC

Batch multi-product plant versus Continuous single-product plant (production of proteins)

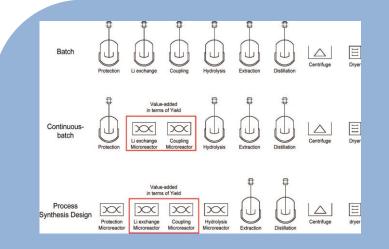
PROCESS

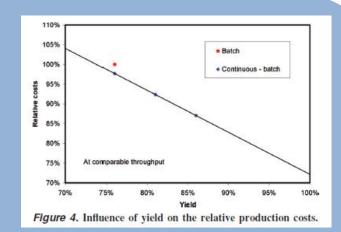
Continuous Flow versus **Batch** reactor Nitration Hydrogenation 0.57 Plant Depreciation 0.65 **Plant Depreciation** 0.65 0.84 Energy Energy 0.73 0.67 Waste Disposal Waste Disposal 0.72 Labor Labor 0.53 0.74 NaOH Hydrogen 0.74 0.75 Water Water 0.72 Catalyst 0.25 Catalyst 0.27 0.82 Solvent Solvent 0.57 Substrate Substrate 0.2 0.4 0.6 0.8

Continuous 📕 Batch 🗐

Source: Seifert et al., 2012 (Dortumund University, Germany and Data from Novo Nordisk) Source: Calabrese et al., 2011 (Corning Incorported Life science)

Continuous Batch


EPSRC


Case Studies ECONOMIC EVALUATIO

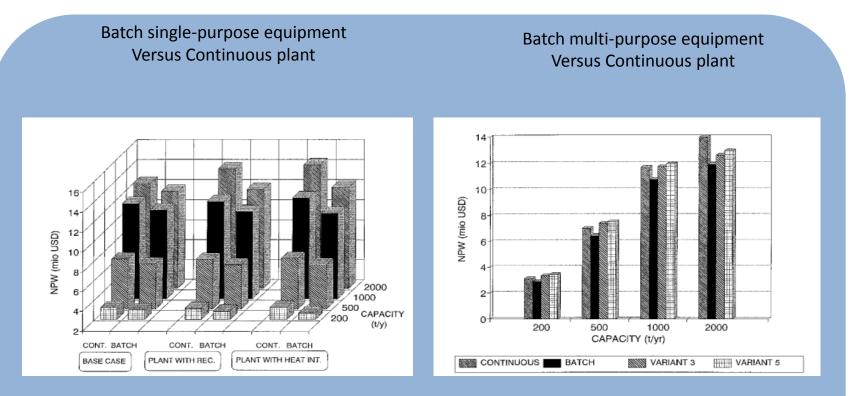
Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation

Economic analysis of 3-scenarios from hybrid systems

	batch	continuous batch	process synthesis design
campaign size (tons)	5	5	5
batch assets	six 6-m ³ reactors	five 6-m ³ reactors	two 6-m ³ reactors
MR CAPEX ^b	0 Mio \$	less than 1 Mio \$	more than 1 Mio \$
operators	3.5	2.8	2.0
throughput ^c (kg/min)	1.7	2.1	2.1
bottleneck	coupling	distillation	distillation
gain in yield (%)	0	+5	+5
economical gain (%)	0	+10	+16

Source: Roberge et al., 2008 (University of Ottawa, Canada and Lonza Itd)

-


ERSITY OF

CAMBRIDGE

MInternational Wanuaccuring

Batch versus Continuous

Centre 101

International Manufacturing

Source: Gorsec and Glavic, 2000 (University of Maribor, Slovenia)

Case Studies

Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisatic FCONOMIC EVALUATION

Summary of cost differences for all process options (relative to batch case)

	1	API mass loading = 10	0%		API mass loading = 5	50%
cost of KI :	\$100/kg	\$500/kg	\$3000/kg	\$100/kg	\$500/kg	\$3000/kg
batch (basis for differences)	[\$1515M]	[\$2337M]	[\$7472M]	[\$5117M]	[\$9225M]	[\$34902M]
CM1R with direct tablet formation	-32%	-22%	-9%	-40%	-24%	-9%
CM1 with direct tablet formation	-21%	-10%	4%	-24%	-9%	5%
CM1R with roller compaction	-30%	-21%	-9%	-40%	-23%	-9%
CM1 with roller compaction	-20%	-9%	4%	-23%	-8%	5%

Source: Schaber et al., 2011 (Novartis with MIT)

EPSRC

References

- Comparisons of single step processes
- Limited real-life examples to draw generalisations
- Impact not generally assessed beyond single process or site

Gaps:

- Lack of end-to-end supply chain assessments
- Potential for reconfiguring the value chain

1	Ahmad	Refining the product-process matrix	2002
2	Behr	New Developments in Chemical Engineering for the Production of Drug Substances	2004
3	Calabrese	From Batch to Continuous Flow Processing in Chemicals Manufacturing	2011
4	Collins	Feature-Based Investment Cost Estimation Based on Modular Design of a Continuous Pharmaceutical Manufacturing System	2011
5	Gorsek	Design of batch vs. continuous processes. Part I	1997
6	Gorsek	Design of batch vs. continuous processes. Part II	1997
7	Gorsek	Design of batch vs. continuous processes. Part III	2000
8	Hayes	Link manufacturing process and product life cycles	1979
9	Jodlbauer	Range, work in progress and utilization	2005
10	Kim	Manufacturing strategy and production systems: An integrated framework	1993
11	Konstantin ov	Continous bioprocessing: an interview with Konstantin Konstantinov from Genzyme	2011
12	Lawton	Continuous Crystallization of Pharmaceuticals Using a Continuous Oscillatory Baffled Crystallizer	2009
13	McKenzie	Can Pharmaceutical Process Development Become High Tech?	2006
14	Pieters	The Impact of Microtechnologies on Chemical and Pharmaceutical Production Processes	2007
15	Plumb	Continuous processing in the pharmaceutical industry: Changing the mind set	2005
16	Safizadeh	Empirical Analysis of the Matrix Product-Process	1996
17	Safizadeh	Linking performance drivers in production planning and inventory control to process choice	1997
18	Schaber	Economic Analysis of Integrated Continuous and Batch Pharmaceutical Manufacturing: A Case Study	2011
19	Schoeters	Overcoming the Misconceptions of Continuous Processing	2011
20	Schwalbe	Novel Innovation Systems for a Cellular Approach to Continuous Process Chemistry from Discovery to Market	2004
21	Seifert	Small scale, modular and continuous: A new approach in plant design	2012
22	Trout	Next-wave model	2009
23	Trout	Continuous Manufacturing of Small Molecule Pharmaceuticals: The Ultra Lean Way of Manufacturing	2009
24	Vervaet	Continuous granulation in the pharmaceutical industry	2005
25	Werani	Semicontinuous granulation—the process of choice for the production of pharmaceutical granules?	2004
26	Wilburn	The Business Case for Continuous Manufacturing of Pharmaceuticals (Thesis)	2010

EM Centre for International Manufacturing

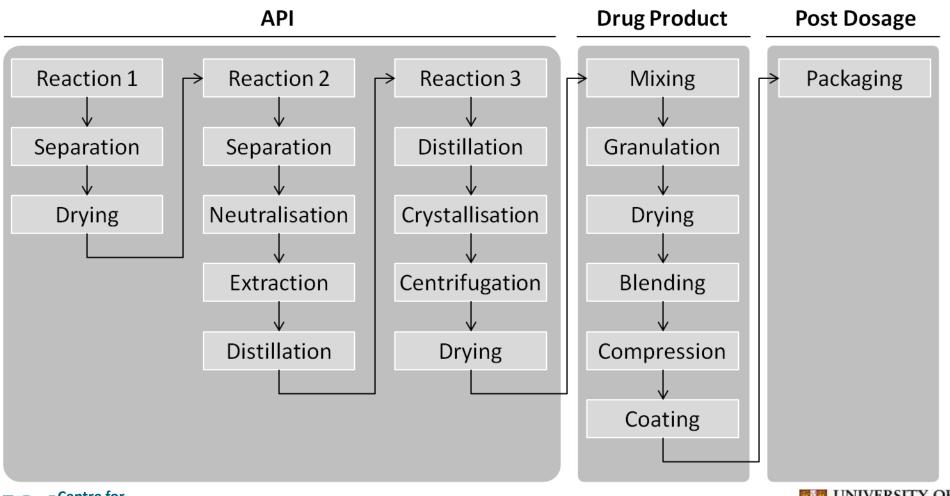
Agenda

- Project Scope
- Evidence from the Literature
- Barriers & Enablers
- Investigative Approach
- Initial Findings
- Opportunities Pharma feedback
- Opportunities Other industries
- Next Steps

Barriers to Continuous Manufacturing

Regulatory	Social	Process	Technology	Economic
 PAT and QbD requirements FDA/ Regulatory approval Quality validation Harder traceability Sterility issue as contaminants and by-products build up within the system 	 Market acceptance Varying customer demands in a global, agile market Perception of 'only suitable for large volume' Lack of experience and fear of unknown 	 Lack of process understanding Supply chain effect Uncertainty in time- to-market 	 Cont. isolation and drying technology Long reaction times of solids Start up and shut down issues Smaller scale, multi- purpose line production tech. Cont. crystallisation tech. Out of spec material handling (OOS) 	 Resource availability at start-up Equipment cost Investment risks Capital requirement to switch to continuous mode Specialised personnel required

Agenda


- Project Scope
- Evidence from the Literature
- Barriers & Enablers
- Investigative Approach
- Initial Findings
- Opportunities Pharma feedback
- Opportunities Other industries
- Next Steps

What are likely process archetypes (and their likely supply chain implications)?

If M Centre for International Manufacturing

in Continuous Manufacturing and Crystallisation

Typologies of change identified as suitable basis for exploration

 What do continuous manufacturing technologies *enable* pharma companies to do? – and what might be the implications?

Туроlоду	Level	Category	Description
1A	Single Plant ¹	Process	Simplification of individual process steps
1B		rationalisation	Stringing process steps together
2A			Fewer plants (joining processes in
	Manufacturing Network ²	Diant configuration	same location)
2B		Plant configuration	Many smaller plants (more
ZD			dispersed)

¹Manufacturing facility including all processes in that location

² Network comprised of a number of manufacturing facilities, e.g. primary and secondary processing

fM^{Centre for} International Manufacturing

Value-chain implications [WIP]

Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation

Тур.	Description	R&D	Supply	Production	Distribution	In Use & Service
1A	Simplification of individual process steps	•Flexibility and expertise concerning	•Lean supply chains •Supply order	•Quality •Manpower •Waste	user	from market / end
1B	Stringing process steps together	production •Organisational barriers	automation •Material specifications	•Scalability •PLC (IP) •On-demand production	 Inventories / Warehousing 	
2A	Fewer plants (joining processes in same location)	•Up-front cost and effort for risk mitigation •R&D lead time	 Impact on process side (1A/1B) Level of integration 	 Footprint and CapEx Economies of scale Waiting time Maintaining reliability 	•Complexity and cost •Distance	•Lead time to patient
2B	Many smaller plants (more dispersed)		 Fluctuation & complexity Economies of scale 	•Manpower •Quality in various markets	•Distribution frequency and volume •Distance	 Local market access Pricing & reimbursement Cross-border trade UNIVERSITY OF
	<u>entre for</u> nternational Manufacturing	<u> </u>				CAMBRIDG

Process Archetypes

Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation

	1	2	3	4	5	Comments
PROCESS ARCHETYPES Volume (process capacity)	ml/min		lt/min		t/day	Small, medium and high volume with single and multi product - continuous manufacturing is favourable.
			-		yuay	
Variety (multi or single)	single	2 or 3	4 to 7	8 to 15	more than 15	Multipurpose plant with small volume - batch plant is favotable.
Use	Discovery	Development	Semi-tech	Pilot	Production	More challenges in ADI manufacturing compare to drug are duct
Stage	ΑΡΙ		Drug products		Post dosage	More challenges in API manufacturing compare to drug product formulation.
GSK Pilot Plant						
Volume (process capacity) Variety (multi or single)	ml/min single	2 or 3	lt/min <mark>4 to 7</mark>	8 to 15	t/day more than 15	
Use	Discovery	Development	Semi-tech	Pilot	Production	
Stage	АРІ		Drug products		Post dosage	
Genzyme Plant						
Volume (process capacity)	ml/min		lt/min		t/day	
Variety (multi or single)	single	2 or 3	4 to 7	8 to 15	more than 15	
Use	Discovery	Development	Semi-tech	Pilot	Production	
Stage	API		Drug products		Post dosage	
Lupin Limited (Cefpodoxime	<u>э</u>					
) Volume (process capacity)	ml/min		lt/min		t/day	Capacity - 3 to 4 t/day - All Products
Variety (multi or single)	single	<mark>2 or 3</mark>	4 to 7	8 to 15	more than 15	Multi product plant (3 products)
Use	Discovery	Development	Semi-tech	Pilot	Production	
Stage	API		Drug products		Post dosage	All products are API.
If A Centre for						UNIVERSITY OF

If MInternational Manufacturing

	UNIVERSITY OF
V	CAMBRIDGE

Product Archetype

PRODUCT ARCHETYPES	1	2	3	4	5	Comments
Purity	93-95%		96-97%		98-100%	Higher quality compare to batch process.
Consistency	low		medium		high	Higher consistency in quality will be achieved in continuous processes due to steady state process In API manufacturing continuous Crystallisation,isolation and drying is a major
АРІ Туре	Chemical				Bio	challenge
Processing routes						Reactions which takes very long time and highly exothermic can be succesfully
(chemical, physical)	Chemical				Physical	performed in microreactor in significant time.
						As Price of KI increases percentage of overall profit decreases due to start up and
Cost of KI (key ingredient)	100/kg	500/kg	1000/kg	2000/kg	3000/kg	shut down losses.
Final form of product	tablets	capsules	s creams	liquids	steriles	
Volume (Quantity)	low	_	medium		high	
Manufacturing Strategy	make-to- stock				make-to-	order

Patent protection

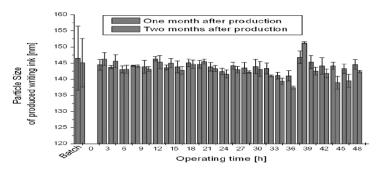
Agenda

- Project Scope
- Evidence from the Literature
- Barriers & Enablers
- Investigative Approach
- Initial Findings
- Opportunities Pharma feedback
- Opportunities Other industries
- Next Steps

Continuous Manufacturing transformations.....many industrial examples to draw from

- Unit Operation level: Fast Moving Consumer Goods
 - Massive reduction in WIP inventory by moving from full batch to Common-Base manufacturing and post-dosing technologies
 - Supply chain impact on inventory, flexibility and product variety
- Process Change: Introduction of Print-head technology in Ceramic tile decoration
 - Continuous ink-flow print heads driving industry resurgence of fast declining European ceramics industry; a new application
 - Transformation from long campaigns to 'on-demand' production
- Production System level; Pulse-line Production/Service Systems in Auto/Aero
 - Introducing a 'continuous' rhythm in traditional job-shop manufacturing
 - Data complicated in Aero by changes on who does what but dramatic changes in productivity/control

IfM Centre for International Manufacturing



Cross-sector Case Studies

CM of Ink products

- Total reaction time was reduced by 95%
- Sample produced in continuous run shows very high and constant product quality compared to batch.

• Waste water production found to be reduced by factor of 1000 through micro-continuous manufacturing.

Source: Grundemann et al., 2009 Technische University and Pelikan PBS & Co.

CM of ADL (Antiseptic Disinfect Liquid)

- By application of lean manufacturing techniques: following benefits are observed:
 - NVA (Non-Value Added) time has been decreased from 1,170 to 420 minutes.
 - TCT (Total Cycle Time) has been reduced from 28 to 10 minutes.
 - Workforce has been reduced from 6 to 3 (50%).
 - Reduction in WIP inventory from 6,092 to 864 units.
 - Reduction in floor space (38 %) has been achieved.

Source: Chowdary and George, 2012 University of West Indies and Genethics Pharmaceutical Limited

Centre for International Manufacturing

Cross-sector Case Studies

CM of oral care products (A leading multi-national co.)

- Reduction in materials flow by 65%.
- Increase in labour productivity by 33.5%.
- Increase in throughput by 25% (through higher Capacity utilization)
- Reduction in lead times from 3-4 days to 24h.
- Reduction in WIP.
- Achieving `zero defects'.

Source: Mukhopadhyay and Nandi, 2000 (NITIE, Mumbai and leading multi-national toothbrush mfg company)

Application of JIT principles in CM supply chain system

 DOW Company and it's channel partners were able to improve demand forecast accuracy by 25% and decrease the lead time by 50%.

Source: Cook and Rogowski, 1996 (Central Michigan University and Dow chemical company)

Pharma implications

Industry views

"It's kind of like what happened with the first iPad. When it became successful, everybody else started making tablet computers...I think the benefits are so huge, companies are almost going to have to try to do it." **Tom Van Laar, Head of Global Technical Operations for Novartis.**

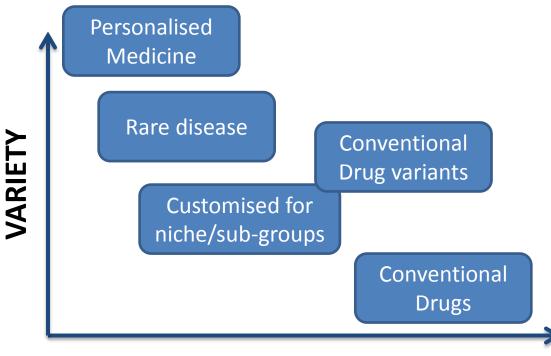
Academic

Many 'specific' examples that encourage further investigations as to when it makes sense and when it does not!

Scope is complicated as benefits at multiple units of analysis and major benefit is probably at the systems level challenging perhaps how things are done altogether in both the innovation chain and supply chain

Agenda

- Project Scope
- Evidence from the Literature
- Barriers & Enablers
- Investigative Approach
- Initial Findings
- Opportunities Pharma feedback
- Opportunities Other industries
- Next Steps


1. Product-Process Archetype development

	1	2	3	4	5
PROCESS ARCHETYPES					
Volume (process capacity)	ml/min		lt/min		t/day
Variety (multi or single)	single	2 or 3	4 to 7	8 to 15	more than 15
Use	Discovery	Developmen t	Semi-tech	Pilot	Production
Stage	ΑΡΙ		Drug products		Post dosage
Primary	Reaction	Extraction	Crystallisatio n	Filtration	Drying
Secondary	Milling Blending		Granulation	Compression	Coating
	1	2	3	4	5
PRODUCT ARCHETYPES					
Purity	93-95%		96-97%		98-100%
Consistency	low		medium		high
API Type	Chemical				Bio
Processing routes (chemical, physical)	Chemical				Physical
Cost of KI (key ingredient)	100/kg	500/kg	1000/kg	2000/kg	3000/kg
Final form of product	tablets	capsules	creams	liquids	steriles
Volume (Quantity)	low		medium		high
Manufacturing Strategy	make-t	o-stock			make-to-order

2. Key Network Design variables: e.g. Variety-Volume Matrix

VOLUME

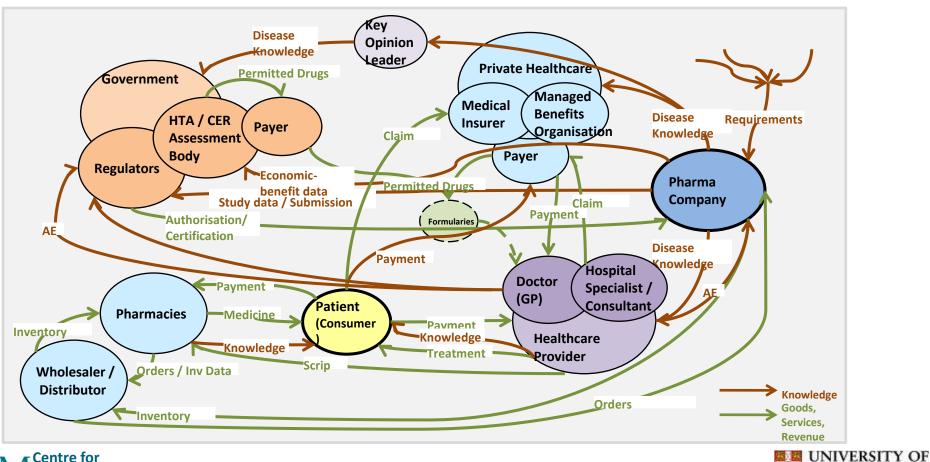
- Focus on 2-4 extremes
- Cover the landscape
- Select some representative products

- 3. Mapping the Current State Value Chain and Supply Network
 - Value Chain Analysis
 - Supply network structure map
 - Production: Unit operation map

Engineering and Physical Sciences

Research Council

 Capture performance data and compare with other industries



CAMBRIDGE

Pharma Value Chain Actors, and

Information, Material & Revenue Flows – New Value Propositions?

If M Centre for International Manufacturing

in Continuous Manufacturing and Crystallisation

DutomesExpected OutcomesGreater responsiveness (Speed and Agility)Minimising Working CapitalAbility to ramp up and down production ratesShorter Change overMore Flexible factoryPatent ExtentionLower Processing cost (energy consumption)Fiscal benefitsLower Fixed costsImproved Cash FlowHigher PurityHigher PurityHigher ConsistencyBetter YieldLess Environmental Impact (solvent removal/

Identify attractive product-process technology challenges

	Personalised													_		
Outcomes																
Greater responsiveness (Speed and Agility)																
Minimising Working Capital	Medicine															
Ability to ramp up and down production rates			1 1		_											_
Shorter Change over																
More Flexible factory								-								
Patent Extention																_
Lower Processing cost (energy consumption)																
Fiscal benefits																
Lower Fixed costs		-		Rare disease												
Improved Cash Flow																
Higher Purity															$ \rightarrow $	_
Higher Consistency																
Better Yield																
Less Environmental Impact (solvent removal/																
reduction)																
Less WIP Inventory																
Reduces the Time to Market			1.1		-											
Higher Transferability/ portable							_						_			
Reduce Footprint					-				$\int d$	h	Ve	n	tin	na		
Lower CAPEX											vC					
Lower operating cost									D		σ、	Ia	ria	int	S	
Lower Variable Cost											Ь,					
Less labour required																
Increased asset utilisation		Cus	sto	m	ise	ed	f	or								
Reduced material handling and transport																
Improved flow of material	n	ich	e/s	su	b-	gr	οι	JD	S							
Improved process control			- /			0										
Less product rejects																
Lower cost of quality					-											
Better process reliability								-								
Reduced cycle time																
Accelerated new product development rate			-						C	on	NE	'n	tic	ona	al	
Minimising total reaction time					_		_									
Better temperature control											D	<u>í U</u>	σς			
Greater control over product quality					-								65			
More predictable scale-up																_
Sustainability (less waste, greener chemistry,																
lower CO2 footprint)		-														_
Enabling the manufacture of more complex		\neg														
products and processes with safety issues																
			1							I		1	1	.		_

4. Future State Scenarios

Will be developed based on

- Continuous Manufacturing Impact Matrix
 - opportunity identification based on scenario development
- Innovative business models and Supply Chain models

 feasibility
- Alternative Product-Process technology roadmaps – feasibility
- Learning from other industries
 - best practice and knowledge transfer