

Developing Pharmaceutical Continuous Crystallization Processes - Knowledge & Gaps

Chris Price on behalf of the IMI team Product Development

Context - Innovative Manufacturing Initiative Move from Batch, to End to End Continuous Processing

Reaction **→** Extraction →Reaction → Reaction → Reaction

The moment when the final reagent flow commences final intermediate is consumed and API product is formed

Extraction \rightarrow Distillation \rightarrow Crystallisation \rightarrow Isolation

Task: Provide a multi-product, scalable, continuous particle formation & purification system delivering consistent API suitable for direct formulation.

Batch produced NCE A is recrystallized for phase control & is very pure. NCE A forms many solvates

Particle size distribution, crystal habit, bulk properties suitable for direct formulation

Suitable for a QbD filing using on / at line process monitoring & control

Consistent attributes over extended process duration over a range of scales

Multi product

Applicable to most NCEs without major equipment redesign

So what does 100 years of continuous crystallization teach us?

- To minimise encrustation operate at low supersaturation
- Slow growth delivers purification
- Suppress nucleation, to make large particles for easy separation
- Scale up / down is difficult
- Successful design requires an extensive data set collected at scale
- Operation at small scale is very challenging

How about continuous precipitation

- Potential to deliver fine particles
- Operate at high supersaturation to get high nucleation rates and minimal growth
- o Delivers little purification
- Favours extreme crystal habits (needles / filaments)
- Large variations in special distribution of supersaturation make scale up difficult
- **o Risk of nucleating a meta-stable phase** of polymorphic materials which then transforms during isolation

Ideas to take forwards

- Minimise encrustation by operating at low supersaturation
- Obtain purification by slow growth

Suppresses nucleation, to make large particles for easy separation **Term superate induction rate independent** of supersaturation to achieve target size Manipulate nucleation rate independently

How?

Technical design aspects to consider

NCE A Purification

Crystallization achieves significant purification but a few impurities need to be controlled.

Control strategy: Control input quality Starting materials Reaction conditions

Monitor reactions by online assay

Control crystallization conditions.

Solvates concerns dominate NCE A crystallization development

Batch DOE To find level of MEK in MIBK to get yield & avoid MEK solvate

Low MEK concentration form unsolvated crystals

MEK > ca 15% tend to K solvate

Impact of Supersaturation on Crystal habit

Decreasing Supersaturation

Particle Size Control - NCE A

NCE A Crystallization Process Understanding

Strategy based on identification of process parameters and understanding their impact on process performance

Feed solvent ratio

API concentration

Residence time in

first crystallizer (°C)

Residence time in second crystallizer (mins)

Temperature of second crystallizer (°C)

Risk of forming MEK solvate

Risk of line blockage due to solubility limit

Scaling-up Continuous Crystallization

Delivering Consistent API

Consistency across scales – reliable scale-up

2005 Lab POC $L10 = 3.4 \mu m$ $L50 = 12 \mu m$ $L90 = 26 \mu m$

2008 **Plant Campaign** $L10 = 3.8 \mu m$ $L50 = 12.7 \mu m$ $L90 = 24.3 \mu m$

Consistency of purity and assay

NCE A Plant Campaign Managing Encrustation

Crystallizer 3 operated in pilot plant for >20 days without cleaning: Final minutes of operation Crystallizer drained but not washed

Encrustation was a significant issue during early stages of process development. Operating at low supersaturation minimises the problem. Building a cleaning procedure into the process has made long term operation possible

A Success …. But is it applicable to other NCEs

• NCE A

- Combined cooling & anti-solvent crystallization
- NCE B
	- Isothermal anti-solvent crystallization to produce a hemi-hydrate
- NCE C
	- Reactive & cooling crystallization
- NCE D
	- Cooling crystallization of material which tends to oil dreadfully
- NCE E
	- Combined cooling & anti-solvent crystallization
- A, C & D run at plant scale for extended periods > 12 days
- B & E run at lab POC scale for >30 hours

Isolation of API

• Filter & wash API to remove impurities and leave wet in a non-solvent to allow drying without agglomeration / granulation.

A semi batch approach has been demonstrated a pilot scale using the FIMA, a combined centrifuge and dryer.

This necessitates the accumulation of a charge of product crystal slurry which is held for at least the duration of the isolation cycle.

A Continuous Crystallization Strategy for Pharma

- *Manipulating nucleation rate independently of growth rate* allows control of the product particle size, operating at low supersaturation minimises encrustation, delivers purity & less extreme crystal habits.
- *Operation with a high crystal surface area of small crystals* allows a high mass of API to be crystallized per unit volume of solution even at low supersaturation. Thus the equipment is small compared with the conventional continuous crystallizers.
- Making small organic crystals of similar density to their mother liquors avoids hydrodynamic constraints encountered in conventional continuous crystallizer design.
- *Artificially enhancing rather than suppressing nucleation allows us to avoid compound specific crystallizer design*.
- Proven for cooling, anti-solvent and reactive crystallization
- Particle sizes are typical of APIs and are controlled.

Success?

Multi product

Cooling, anti-solvent & reactive crystallizations of 5 different NCEs each with their own challenges run at scale for meaningful duration

 \checkmark

So what about the gaps?

• Nucleation

– This approach requires a high secondary nucleation rate at very low supersaturaion. There are several ways to do this well but our understanding is incomplete. There is more opportunity to improve the approach with a deeper understanding.

Isolating the particles for direct formulation

- Individual 2-20µm particles of API tend to have poor powder properties. Harvesting them as granules and incorporating "functional excipients" seems attractive.
- Linking continuous primary & secondary manufacture
	- An attractive future state

Secondary Processing Benefits - Batch vs continuous approach- potential to streamline

Continuous processing can help avoid this. Possible to have raw materials to product in minutes/ hours Online analysis/parametric release required but continuous facilitates this

Working Towards Fault-Tolerant Control

…"fault handling utilizes an integrated fault diagnosis system (MSPC) to allow fault-tolerant control"….

i.e. only stop when there is a real risk to quality.

