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Bulk Behaviour 

 Characterisation of the bulk behaviour based on single particle properties 

is of strategic importance in many processes involving particulate solids: 

e.g. transportation, filling, mixing, compaction, milling and granulation. 

Linking materials properties (single 

particles) to performance (bulk 

behaviour) 
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The term Discrete Element Method (DEM) is referred to a family of 

numerical methods for computing the motion of a large number of 

particles based on Newtonian laws of motion (Cundall and Strack, 

1979).  
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Discrete Element Method (DEM)  
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Cundall, P.A. and Strack, O.D.L.; Geotechnique (1979). 

 

Modelling of Bulk Behaviour using  

Distinct Element Method (DEM) 
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 Effect of single particle properties and process variables on bulk 

 behaviour in particular  processes needs to be understood...... 

 sensitivity analysis 

In a number of applications there is insufficient material for testing 

 or material is not easily accessible, e.g. pharmaceutical  and 

 nuclear industries 

 Some parameters can not be measured or quantified in the -

 experiments, e.g. internal particle flow and stresses 

 Scale-up: moving from lab scale to pilot plant and industrial  scales 

 requires extensive trial and error….  

 Modelling is a mean to interpret experimental results 

How DEM Modelling Can be Useful.. 
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Both beads free-flowing 
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Analysis of Segregation of Mixtures: 
Sensitivity analysis 

 
How to avoid segregation of light fine particles from dense course particles?  

 

Dense Coarse Beads Cohesive  

Surface Energy (G) = 0.5 J/m2 



 Understanding the cause of segregation during heap formation 
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Segregation during Heap formation 
• Interpretation of Experimental Results 

• Sensitivity Analysis  



 Initial packing of sample: a randomly mixed system 

 Colours represent volume (related to size) of particles 

 

5 mm 

 

 

4 mm 

 

 

3mm 

 

 

2 mm 
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DEM Modelling of Segregation during Heap 

Formation: effect of cohesion on 

segregation 



 Colours represent average size of particles in each bin 
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4 mm 

 

 

3mm 

 

 

2 mm 

Fine particles are cohesive 

 

All particles are 

cohesive 

All particles are free 

flowing 
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DEM Modelling of Segregation during Heap 
Formation: effect of cohesion on segregation 
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Formation of Seeded Granules in 

Cyclomix High Shear Mixer: 
Interpretation of Experimental Results 

 

Seeded granules occur in Cyclomix high shear mixer under certain 

operating conditions 
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DEM Simulation of Granulation in 

Cyclomix 



Seeded granules are quickly formed in the high shear region (middle part) and 

break as soon as they approach the top part 12 

DEM Simulation of Granulation in 

Cyclomix: formation of seeded 

granules 



 Modelling the agglomerate and compact breakage 
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Particle motion analysis in a 

paddle mixer 
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DEM of Mixing of Particulate Solids:  
Minimising Trial and Errors; Insufficient Available 

Materials; Parameters Difficult to Measure 



6l paddle mixer was seeded with a positron 

charged tracer particle.  

The mixer was run at various condition over 

a period of time (usually 20-30 min). 

Position of the tracer is continuously 

recorded against time. 

Bulk flow properties per trial is analysed 

from the temporal velocity and occurrence 

frequency of the tracer. 

 

 

Position of 
particle 

generation  

Impellers 

Experimental Measurement using 

(Position Emission Particle Tracing (PEPT) 
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 DEM: data on all particles  

PEPT: the time averaged data for one tracer but over a long period of running 

time (excess of 10 minutes) 

Average normalised velocity from PEPT: 0.43 

Average normalised velocity from DEM: 0.41 

          0.36    0.72    1.08     1.44 

Normalised Velocity (-) 
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Quantitative Comparison of Powder 

Flow between  DEM and PEPT 



 5 l, 5 Hz  
Tip Speed 3.52 m/s 

 1 l, 7 Hz  
Tip Speed 3.17 m/s 

Scale-up      w2/w1=(d1/d2)n         n = 1      Tip speed constant 

           n = 0.5    Froude number constant 
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DEM Modelling of Cyclomix High Shear 

Mixer Granulators: Scale-up 



The coefficient of variation  of shear stress decreases as the impeller tip speed 
is increased. 

DEM Modelling of Cyclomix High Shear 

Mixer Granulators: Scale-up 
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Modelling of Particle Milling: 
• Minimising Trial and Errors 

• Insufficient Available Materials 
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1- Modelling particle 

breakage: particle made 

of agglomerates, clusters 

of smaller elements bond 

Computationally very 

expensive, difficult to 

model full scale mill 

 

2- Predicting the mill 

performance: collisional 

energy, stress magnitude 

and distribution 

 

 

 



DEMV Simulations 
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Modelling of Ball Milling 

DEM simulation at 25 Hz of milling frequency in the single ball mill 
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• Milling energy (En ) is deduced from the relative velocity (v ) and 
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Unification of Results 

Material property group 

Milling Power 



Solid-fluid flow modelling 

Fluidization 
Sedimentation/ 

re-suspension 

DEM + Continuum Method (CFD); Full Fluid-Solid coupling 

Solid/fluid interaction 

22 
22 

Dispersion 



 

Pneumatic conveying, 

powder dispersion and 

fluid diffusion 

Solid-fluid Flow Modelling: 

DEM-CFD coupling  

23 

Agglomerate dispersion 



 With an increase in bonding interface energy it becomes increasingly difficult 

to disintegrate particle clusters. 
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Solid-fluid Flow Modelling: 

agglomerate dispersion 



The dispersion ratio (DR); i.e. ratio of the number of broken bonds to 
the initial number of bonds, (DR = 1 means all bonds are broken) 
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Solid-fluid Flow Modelling: 

agglomerate dispersion 

DR shown as a function of relative velocity between the fluid and particles. 
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 DEM provides useful information in understanding particulate 

processes and obtaining parameters difficult to measure by 

experiment.   

 DEM analysis shows good capabilities of interpretation of 

experimental data 

 Numerical modelling capabilities can enable virtual experiments 

instead of extensive trial and errors: 

 Particulate Process Development  

 Process Optimisation 

 Process Scale-up 

Challenges and Opportunities 

 Realistic and Complex Models 

 High Performance Computing (CPU&GPU) 

 Model Calibration 

 

 

 

 

 

 

 

 

 

Concluding Remarks 



2002 (5,000)   2005 (40,000)        2008 (500,000)        2012 (10 million)     

Development of Modelling Capabilities (Desktop Workstation) 
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