From Pharmaceutical Substance to Product – An Industrial Perspective on Continuous Processing

CMAC Open Day 12th September 2013

Amy L Robertson AstraZeneca, Pharmaceutical Development AstraZeneca 📣

Overview of Presentation

Challenges of continuous processing in the pharmaceutical industry

- Continuous processing in AstraZeneca
- Drug substance
 - Flow chemistry
 - Equipment

Continuous crystallisation

Drug product

- Wet granulation
- Conclusions
- Acknowledgements

Continuous Processing in the Pharmaceutical Industry

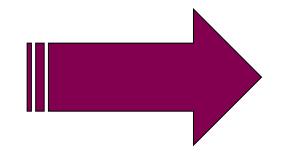
A unique challenge?

Attrition

- Only a small percentage of what R&D work on is commercialised.
- Capital Investment existing facilities and supply chains, return on investment
- Gaps in what we know; the science and traditional skills

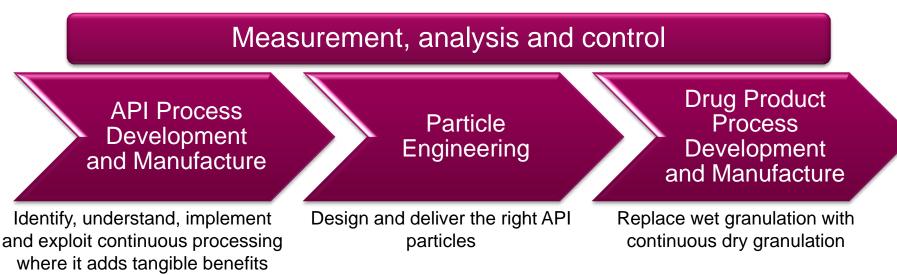
Regulation

- The industry is highly regulated, risk averse and conservative.
- Culture, 'It's not how we do things around here'


The Product

- A safe, efficacious, differentiated (and increasingly reimbursable) clinical outcome, not the medicine itself.
- Focus of R&D investment
- These challenge the adoption of new manufacturing methodologies and technologies.

AZ Journey



- GOAL to design and use continuous processes to generate value for the business throughout the lifecycle of the product.
 Different challenges in the different areas need different solutions
 Outsourced API manufacture
- - Historically low investment in linking substance properties and product performance.
 - Internal, Global formulated product manufacture
- Winning hearts and minds
 - Overcoming techno-economic barriers
 - Addressing skills gaps
 Changing culture

Continuous Processing in AZ Built on collaboration

COLLABORATION across industry and academia is an ESSENTIAL element of the AZ strategy.

- Academics more able to deliver fundamental science allowing industry to focus on application and methodologies. Key that real or <u>good</u> model compounds are used.
- Industrial collaboration in this precompetitive area supports knowledge sharing, leverages investment and strengthens internal and external influence.
- Key overcoming inertia and resistance to change.

Drug Substance

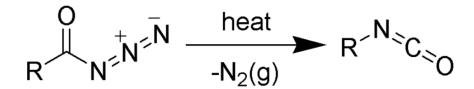
Benefits of Reactions in Flow

Why?

- Selectivity
- Safety
 - unstable/difficult to handle reagents
 - Reactive/explosive intermediates
- Critical mixing control
- Highly exothermic/endothermic reactions
- Excess temperatures
 - Cryogenic or high temperatures
- Unstable products/substrates
- Precise reaction times

Challenges

- Solids block flow reactors
- Work-up in batch may be a bottle-neck
 - Telescopes, liquid/liquid separations, continuous distillation, SMB chromatography


If the manufacture is not going well the process can be stopped and starting materials preserved – not possible in batch!

Example 1: Curtius reaction A Safer More Efficient Process

Delivered 700g at 85% yield
Laboratory delivered (non GMP)
Safer chemistry, enabling better control of hazardous reagents

Uniqsis Flowsyn Lab Reactor

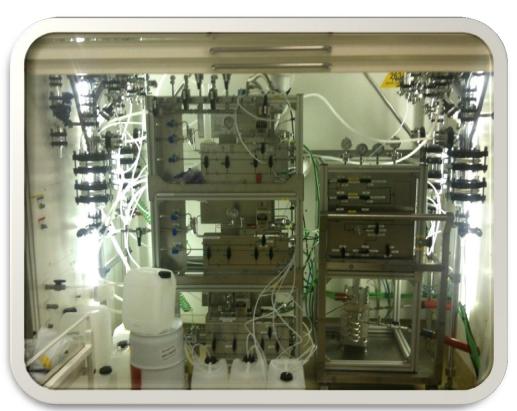
Example 2: Nitration Green chemistry example

- Developed flow chemistry in <2 weeks
- Huge, process intensification
- Removed need for chlorinated solvent
- Solvent free reaction

Parameter	Batch	Flow	
Rxn time	4 to 16 hours	30 to 60 seconds	
Nitric Acid	Comparable equivalents		
Solvent	5.2 rel vols	None (neat acid)	
Conversion	Comparable		

Equipment & Technology New Lab Equipment

Improving Laboratory Capability



Flow Chemistry Scale-Up

•GMP modular continuous processing equipment installed in LSL (Macc)

•Alfa Laval continuous flow reactor used to deliver early phase material: -

- 1 kg processed in 7 hours
- 74% yield (vs 60% batch)
- Improved quality

Continuous processing enables new operating conditions to be exploited

Crystallisation

Benefits of Crystallisation in Flow

- Batch to batch, campaign to campaign consistency in particle properties
 - 'same particles as last time'
- Increased quality
- Variable 'batch size'
- Faster
- Leaner
- Avoid milling and micronising by achieving tighter control over particle size
- Control over particle size, shape and agglomeration

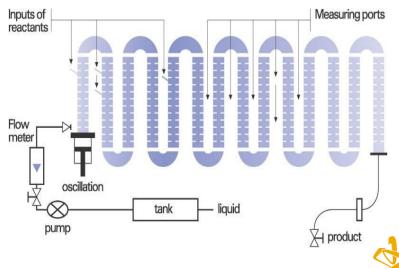
Crystallisation in a COBR

- Mixing is controlled by oscillations, not the net flow as in the case of turbulent flows
- Plug flow characteristics are obtained in laminar flows
- This allows significantly shorter length of reactor and much compact reactor setup than conventional systems

Continuous

- Material moves continually through the equipment

Oscillatory


- Although there is a net flow through the unit, the local flow moves back and forth

Baffled

- Small baffles are installed along the length to promote turbulence and hence mixing

Reactor

- Or crystalliser, or extractor, or...

Process Description

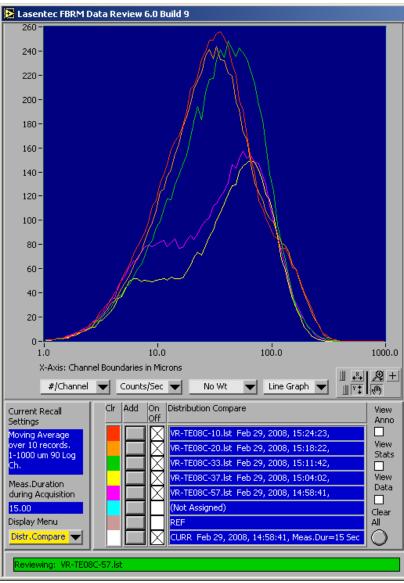
- Crude API is dissolved in solvent at reflux
- Heat to reflux and hold for dissolution
- Agitate and cool the flask contents by 20°C
- Hold
- Reduce the agitation speed and cool to 10°C
- Hold
- Total cycle time 9 hours 40 minutes
- Concentration of the order of 0.062kg/litre (or 6.2g/100ml)

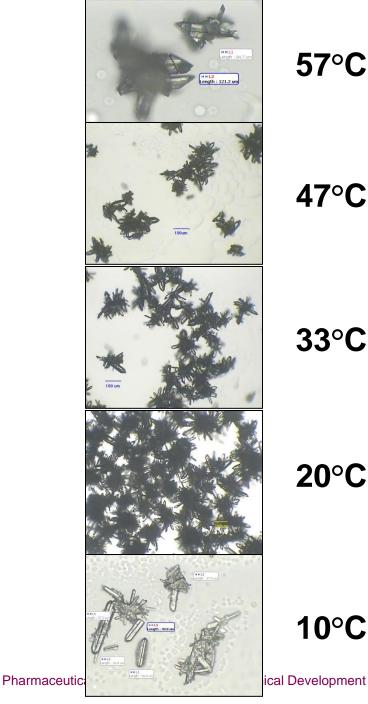
Screening Trials Batch

- Aim to identify key parameters for crystallisation of model API
 - dT/dt; Xo,f, C
- Carried out batch uni-variate experiments
 - Investigate key parameters
 - Would do FED in the future
 - More efficient use of resources

Screening Trials Batch

Oscillation displacement	Oscillation frequency	Baffle Spacing	Mixing	
API Concentration	Use of Seed		Solution Chemistry	
Cooling rate	Hold time for nucleation		Temperature	


Screening Trials Continuous Flow

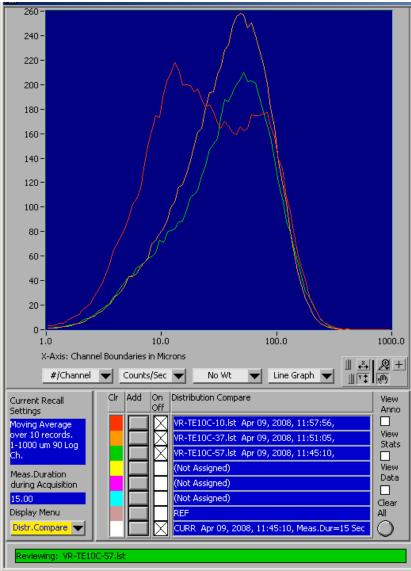

Aim to create particles of a defined size

Target	Cooling	Agitation	Concentration	Seeding
Small	Fast	High	High	None
Large rods	Slow 0.25ºC min ⁻¹	Low Ste		None
Large Agglomerates	Fast	Low	Std	None
Mid size	1ºC min ⁻¹	Std	High	None
Small	Fast	High	High	1%w/w @ 70ºC

1°C/min

57°C

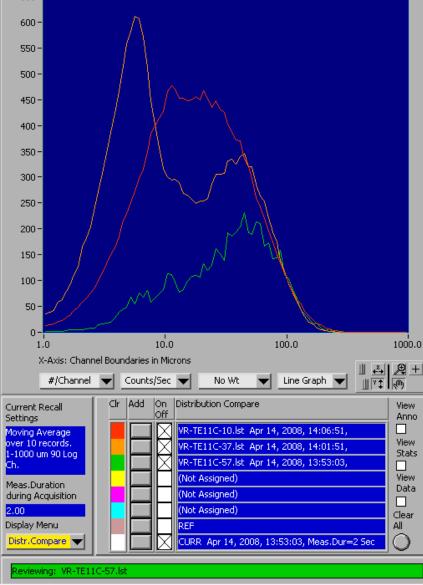
47°C

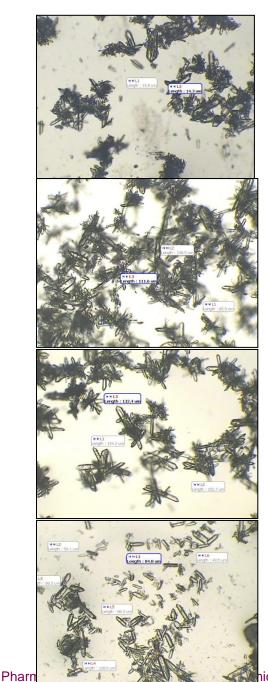

33°C

20°C

10°C

3°C/min seeded


57°C


37°C

10°C after 5 mins

5°C/min seeded

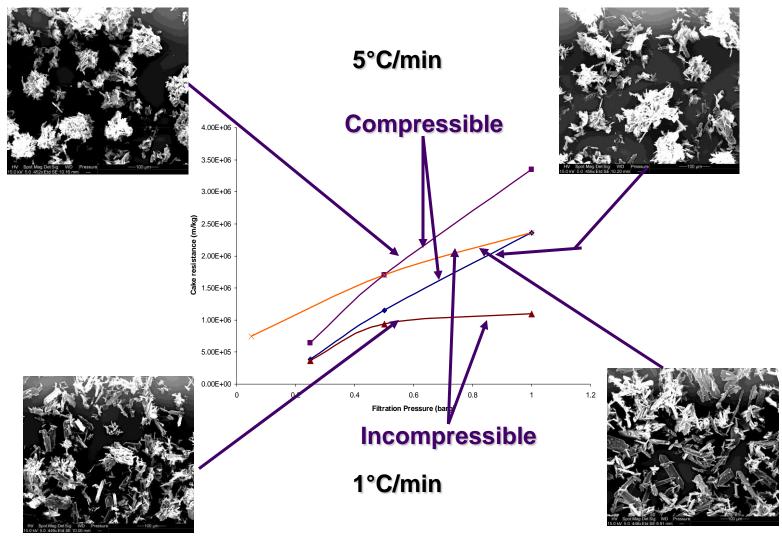
57°C

33°C

10°C no hold

10°C 5 min choldnent

Aggregation or Agglomeration?


 Lasentec and microscopy data suggest that model API crystals form aggregates/agglomerates, even when seeded

These aggregates/agglomerates appear to be broken down when a hold period is incorporated i.e. any crystalline bridges between the primary particles are not yet completely desolvated and cemented
Any bonds that are formed can therefore be relatively easily broken by

agitation

Product Performance

23 Amy Robertson | 12th September 2013

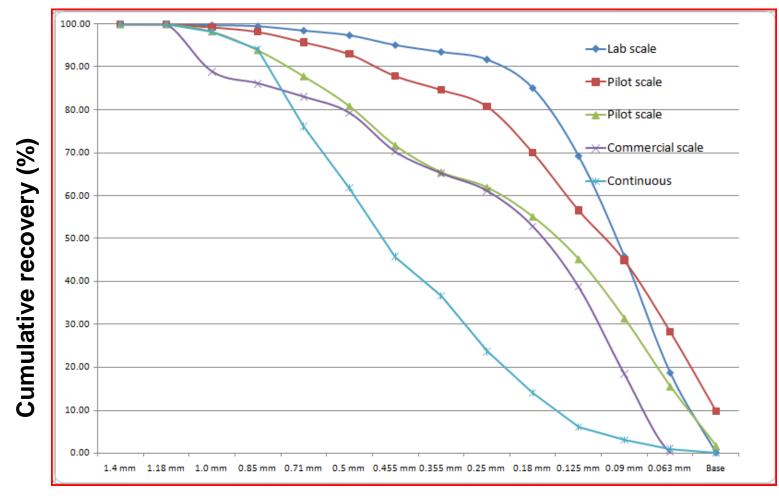
Product Performance

- All continuously generated material filters very well
- Agglomerated/ aggregated material appears compressible
- Rods appear relatively uncompressible following cake consolidation

Drug Product

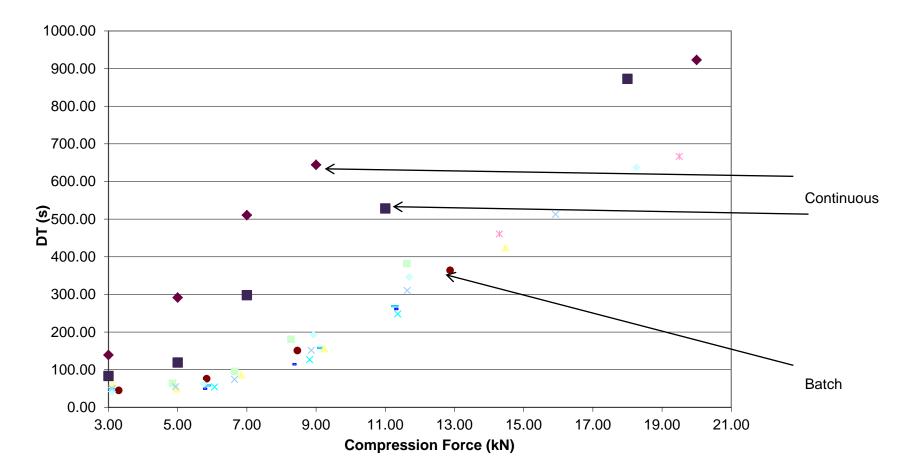
Benefits of Continuous Wet Granulation

- Cost, time and material saving throughout the product life-cycle
 - More experiments in less time with less drug substance leading to greater accrual of knowledge and consequent increases in process control and robustness
 - Greater flexibility of batch size leading to reduced inventories and fewer issues of scale-up
 - Increased yield through fewer losses during processing
 - Smaller footprint with reduced infrastructure and energy costs
 - Potential for real-time release and reduced analytical costs

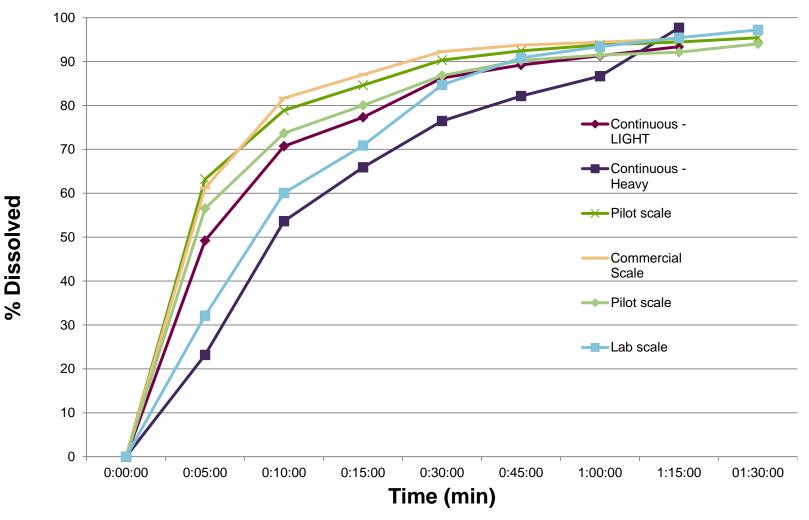


Early Observations

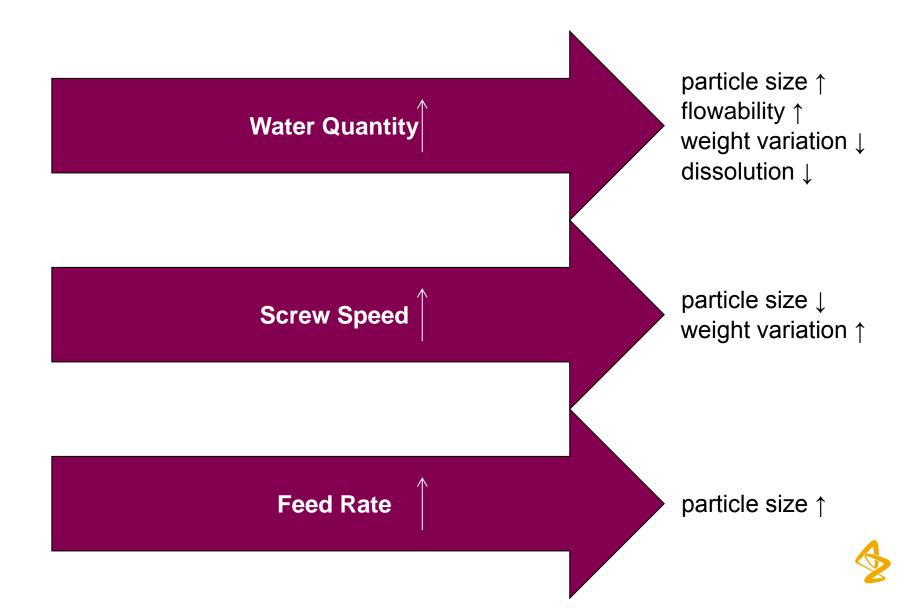
- Potential for rapid prototyping and process evaluation
- Partial process understanding
 - Impact of screw configuration and water quantity, throughput and screw speed
- Some differences in process and product attributes experienced between batch and continuous processes
- Rapid scale-up achievable by extending processing time
 - Stabilisation of the process critical to flexibility in batch size


Process Understanding: Continuous vs Batch Granule analysis: Particle size analysis (sieve)

Cut-off size (mm)



Force vs Disintegration Time


- Long disintegration times
- Steep response → Denser granules?
- 29 Amy Robertson | 12th September 2013

Dissolution

General process observations across products

Concluding Remarks More than just a technical challenge ...

Substantial momentum gained and on the road to adoption of continuous processes in the Pharmaceutical industry

	Understanding		Capability		Availability		
Delivery Risk		Existing	g Assets	Camp	paigns	Time	elines
	Regulators		Resources		Cost		
Culture of cross functional collaboration and innovation							

"A major cultural change is required on behalf of chemists, engineers and managers and it is this, rather than technical difficulty which represents the main obstacle to progress".

32 Amy Robertson | 12th September 2013

Pharmaceutical Development | Global Chemical Development Prof. C Ramshaw

Acknowledgements

AstraZeneca:

- Ali Boyd
- Marcel de Matas
- Henry Huang
- Stuart Jolly
- Mark Jones
- Wyn Jones
- James Kraunsoe
- Simon Lawton
- Anne O'Kearney-McMullen
- Gerry Steele
- Phil Shering
- Jon-Paul Sherlock
- Jon Sutch

NiTech:

- Ian Laird
- Xiong-Wei Ni
- Vishal Raval
- Craig Sinclair
- Lihua Zhao

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 2 Kingdom Street, London, W2 6BD, UK, T: +44(0)20 7604 8000, F: +44 (0)20 7604 8151, www.astrazeneca.com

