Converting Batch to Continuous for Profit as well as Fun

Paul Sharratt Institute of Chemical and Engineering Sciences Singapore

Summary

- Batch and continuous processing
- How can continuous make money?
- Examples
- The hidden gaps

YOU ARE

HERE

Why we have batch

- It does most things... badly, but it does them
- It is immensely tolerant of ignorance
- I already have a lot of pots and think I understand them
 - I can clean the pots and use them again
 - My friends have pots I can use in case I don't have enough
- It fits my business model
 - Short time to market
 - Short product life
- I'm still in business why risk change?

Degussa

So continuous is better?

- Well of course
 - It's smaller
 - Cheaper
 - Faster
 - Safer
 - Cleaner
 - More efficient
 - Scales up more easily

DSM using Corning Microreactors

• How could anybody not see the benefit?

So continuous wants to compete?

- Of course there's a catch
- Yes, there may well be benefits BUT
 - Lots of exaggerated claims have been made based on selective data
 - Need to deliver at whole process level not just one magical item
 - Need to provide benefit for a sufficient proportion of processes to warrant the resource overhead
 - Need to demonstrate a clear business case for each investment

Things that a business might want

- Fast time to market;
- Low development effort (as can't afford a large effort with high attrition and margin pressures);
- Low cost exposure if product fails or market prediction is wrong;
- Transferability to contract manufacture;
- A need to use a range of chemistries and complex multistage processes to make products;
- Work under high degrees of regulation of product;
- ie Ability to implement robust processes quickly and cost-effectively using flexible resources

Mythbusters

- There is a lot of misunderstanding BEWARE OF THE around...
 BULL
- Reactions/crystallisations care about flow
- Microchannels mix fast
- Continuous is inherently safe
 - Remember Bhopal and Flixborough
- All reactions can go fast
- Not many reactions use solids
- The capabilities of continuous automatically align with business need

• etc

Making a business case

- The business case for continuous spans a continuum....
 - "No Brainer" why aren't we doing this already?
 - Perhaps 10% of cases
 - "No Way" glad I still have some batch vessels!
 - Perhaps 10-30% of cases
 - "The Middle Ground" maybe... and the battleground is here

EXAMPLES... THE TECHNICAL BIT

Skids and infrastructure at ICES

Integrated Modular skids

Wiped Film Evaporator

Continuous Oscillatory Baffled Reactor

Co-located with batch plant

- 60L standard batch plant
- Equivalent continuous scale
 20L/h nominal capacity
- And batch vessels can be used as continuous stirred tanks

Batch Reactor Systems

Development tools

- Tools as for batch development
- Calorimetry, batch small-scale
 Reactions, individual behaviour
 assessment (eg settling velocity)
- Use of PAT tools in development

RC1 with Raman

4,D-erythronolactone

Process development

- Developed and ran full scale batch process (60L) for comparison
- Carried out minimal additional development for continuous
- Hybrid processing adopted as back end problematic

The oxidation reaction

Batch calorimetry indicates instantaneous reaction

Typical heat release profile for peroxide addition

But in situ Raman tells a different story

Some results

Stage	Species	%w/w solution	Flowrate (kg/hr)	Flowrate (g/s)		Flowrate (mol/s)	Mol eq	Total mass (kg)
Salt formation (Phases 1 and 3)	D- isoascorbic acid	7.7	9.60	2.67	0.21	0.0012	1.0	19.20
	water				2.46	0.1367		
	sodium carbonate	15	3.30	0.92	0.13	0.0013	1.17	6.6
	water				0.77	0.0434		
Oxidation (Phases 2 and 3)	Hydrogen peroxide	30	1.05	0.29	0.09	0.0026	2.2	2.09
	water				0.20	0.0113		
	sodium carbonate	15	6.38	1.77	0.27	0.0025	2.2	12.76
	water				1.51	0.0837		
Acidification *Batch Phase 4	HCI	18	4.17	1.16	0.21	0.0057	4.9	8.34
	water				0.95	0.0527		

4DEL learning

- The first part of the process could readily be run continuously and with ease
- The appearance of solids and a solvent swap indicated batch for the back end...
 - We think there is a way, but it's speculative
- Without end-to-end continuous there is no business case

Reformatsky Chemistry in a Miniplant

Why continuous processing?

- 1. Reduced inventory Inherently safer
- 2. Increased heat and mass transfer, allowing higher heat removal rate and mixing efficiency
- 3. Higher thermal inertia of the equipment due to higher mass/volume ratio of equipment including cooling/heating system to reactive mass.
- 4. Smaller equipment footprint, possible lower capital cost

This one is almost a "no brainer"

Process Development – Chemical Hazards Evaluation

Reformatsky Reagent

The data showed a rapid increase in both temperature and pressure of about 700°C/min and 50kPa/min respectively

Process Development

Example issue – insufficient cooling following benzaldehyde addion would give temperature excursion (even in continuous)

- Two reactors in series provide:
- 1. Better distribution of heat across reactors
- 2. Better heat control
- 3. Higher surface area to mass ratio
- 4. Higher thermal inertia

Bench Scale Reactor System

• 400kg/yr throughput

Bench Scale Reactor System

Zinc Activation

Reagent Formation

Phase separation

Results – a Happy Surprise

Continuous (10ml/min)

Discussion

Benefits of continuous Reformatsky process:

- 1. Reduced inventory Inherently safer
- 2. Increased volumetric heat transfer, giving more robust safety case
- 3. High throughput bench scale throughput is comparable to a small/medium size batch plant
- 4. Higher selectivity and purity

Reformatsky learning

- Give or take some solids control issues the process could readily be run continuously and with ease
- It allowed us to run a process we would not have taken on at 60L scale and to produce at a comparable rate
- There is a good business case and encouraged, we are now close to running continuous
 Grignard including making the reagent

What we learned about implementation and skills

- While at first the problems seemed daunting, with a little determination they were resolvable
 - Inexperienced technologists delivered successful outcomes in realistic times and without excessive effort.
 - Didn't need to draw on advanced modeling or simulation.
 - Good quality (standard) experimental and sound chemistry /engineering sufficient.
- The set of equipment and skills we have are flexible enough to take on a good range of processing problems
 - Continuous processing is within the capabilities of many organisations
- Benefits are not automatic from "going continuous".

SO WHAT ARE THE BROADER IMPLICATIONS TO DEVELOPMENT?

The Innovation Process 2008

The Innovation Process 2013

That was fun, could we do it again?

- Delivery of a one-off project by specialists is relatively easy with plenty of time
- Learning from them is harder
- Embedding as a way of working is difficult
 - Skill set changes adopting new skills where needed (modeling? PAT for control?)
 - Decision making process modifications
 - Laboratory and pilot plant resources and capabilities
 - Integration with other activities SHE assessment, purchasing and supply
 - Cutting across organisational boundaries

Two key Gaps

- Process understanding
 - How much is enough?
 - How to capture and exploit?
- Design methodology
 - Organising the design activity to be fast and efficient
 - Minimising rework and cost

Gathering and processing understanding

- Mathematical modelling / simulation
 - Viable but very expensive in primary, reliant on good experimental data
 - Tools weak for secondary
- Statistics / OR techniques
 - Links well to experimentation BUT
 - Not understanding based and not design-friendly
 - Too many variables (especially in secondary)
- Structured qualitative approaches
 - Various in house and proprietary methods eg BRITEST
 - Used to capture and exploit understanding in primary and secondary processing

Design methodology

- The Unit Operation approach?
 - Represent (and even optimise) process as a set of welldefined equipment-based operations. SUMS
 - Much less effective for processes where the properties that define a stream are complex and even undefined
- The way chemists put together a process
 - Recipe-based, quite like cookery. LAB
 - Overly experiential and experimental so likely to miss nonobvious opportunities
- The "A Team" approach
 - Put the best guys on it. LAB+SUMS+SMARTS
 - Not feasible if you want to design a lot of processes

Conclusions

- The battle now is moving from the business case to having an embedable, teachable method
- Much underpinning work remains to be done to provide the required understanding

But it's not seen as sexy

 There are still massive challenges in allowing <u>all</u> developers to "see the big picture"

- But it is a massively difficult problem

Thanks to...

- Teoh Soo Khean, Wong Run Ling, Loretta Wong, Gabriel Loh, Loke Chien Ying, Chew Wee, Tan Suat Teng, David Wang, Salim Shaikh, Steven Mun and Ryo Tanigawara
- Kevin Wall, Jorge Arizmendi Sanchez
- BRITEST Limited
- GSK, AZ, Pfizer, Foster Wheeler, Genzyme, Shionogi
- A*Star Singapore
- And many others

