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Summary

* Batch and continuous processing
 How can continuous make money?
 Examples

 The hidden gaps
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Why we have batch

It does most things... badly, but it
does them

It is immensely tolerant of ignorance

| already have a lot of pots and think !
| understand them

* | can clean the pots and use them again

* My friends have pots | can use in case |
don’t have enough

It fits my business model

* Short time to market
* Short product life

I’'m still in business — why risk Degussa
change?




So continuous is better?

* Well of course
— It’s smaller
— Cheaper
— Faster
— Safer
— Cleaner
— More efficient
— Scales up more easily

* How could anybody not see the benefit?

4 t L
~ s Y
- o 1 ! p oy
| ! . R -

DSM using Corning Microreactors




So continuous wants to compete?

e Of course there’s a catch

* Yes, there may well be benefits
BUT

— Lots of exaggerated claims have been made based on
selective data

— Need to deliver at whole process level not just one
magical item

— Need to provide benefit for a sufficient proportion of
processes to warrant the resource overhead

— Need to demonstrate a clear business case for each
investment




Things that a business might want

Fast time to market;

Low development effort (as can’t afford a large
effort with high attrition and margin pressures);

Low cost exposure if product fails or market
prediction is wrong;

Transferability to contract manufacture;

A need to use a range of chemistries and complex
multistage processes to make products;

Work under high degrees of regulation of product;

ie Ability to implement robust processes quickly
and cost-effectively using flexible resources




Mythbusters

There is a lot of misunderstanding  BEWARE OF THE

around... BULL
Reactions/crystallisations care about flo

Microchannels mix fast

Continuous is inherently safe
e Remember Bhopal and Flixborough

All reactions can go fast
Not many reactions use solids

The capabilities of continuous
automatically alignh with business need

etc




Making a business case

* The business case for continuous spans a
continuum....
— “No Brainer” — why aren’t we doing this already?
* Perhaps 10% of cases

— “No Way” — glad | still have some batch vessels!
e Perhaps 10-30% of cases

— “The Middle Ground” — maybe... and the
battleground is here




EXAMPLES... THE TECHNICAL BIT




Skids and infrastructure at ICES

Integrated Modular
skids

Continuous
Oscillatory

Baffled
Reactor

Wiped Film
Evaporator
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60L standard batch plant
Equivalent continuous scale
20L/h nominal capacity

And batch vessels can be used
as continuous stirred tanks
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Batch Reactor
Systems
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Development tools

* Tools as for batch development

 Calorimetry, batch small-scale

Reactions, individual behaviour

assessment (eg settling velocity)

e Use of PAT tools in development
RC1 with Raman
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4,D-erythronolactone

HO , HO
O _o Facile O_o
HO + N32CO3 _ HO + NaHCO3
no  OH HO  ONa
1 2
Feasible | Hx0;
Y
OH 0O
HO
HO, ~ OH HCI o CO.Na + NaO
+ HO,CCO,H = 2 ONa
: 0
o =0 Solids/gas OH

+ NaCl + CO,+ H,0
And product recovery is horrific
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Process development

* Developed and ran full scale batch process
(60L) for comparison

* Carried out minimal additional development
for continuous

* Hybrid processing adopted as back end
problematic




Heat Generation (W/L)

The oxidation reaction

e Batch calorimetry indicates instantaneous reaction

Reaction Heat Profile
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But in situ Raman tells a different story

Start of salt formation Sodium isoascorbate level
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Fead Skid

1

Scenario 4-DEL_2
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Some results

Stage Species %wW/wW Flowrate [Flowrate Flowrate [ Mol ;o;::!
& P solution |(kg/hr) |(g/s) (mol/s) |eq (ke)
D_
isoascorbic 0.21 |0.0012
Salt acid 7.7 9.60 2.67 1.0 19.20
formation water 2.46 |[0.1367
(Phases 1 A
and 3) 0.13 (0.0013
carbonate |15 3.30 0.92 1.17 | 6.6
water 0.77 10.0434
Hydrogen 0.09 |0.0026
- peroxide 30 1.05 0.29 2.2 2.09
Oy water 0.20 |0.0113
(Phases 2 <odium
and 3) 0.27 |[0.0025
carbonate |15 6.38 1.77 2.2 12.76
water 1.51 [0.0837
Acidification | HCI 0.21 |0.0057
*Batch 18 4.17 1.16 4.9 8.34
0.95 [0.0527
Phase 4 water
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4DEL learning

* The first part of the process could readily be
run continuously and with ease

* The appearance of solids and a solvent swap
indicated batch for the back end...

— We think there is a way, but it’s speculative

e Without end-to-end continuous there is no
business case




Reformatsky Chemistry in a Miniplant

3 stage process

Stage 1 — Reformatsky T

reagent formation B 5 20 Gitc Acid Aq

Stage 2 — Reformatsky T
. 0s_ 04N 0
reaction O)\/u\oa * m + ZnBr, + )L
ZnO OZn
OH HsC OEt

Stage 3 — Aqueous quench  wolecuar weignt: 19423
using citric acid ethyl 3-hydroxy-3-

phenylpropanoate

Tr
Zn---0 OEt
O Zn (granular, -30-100 mesh) /[ j/
Br\)L > \ >
CHO
OEt DIBAH EtO O"--Zn 1 O/
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Reformatsky Chemistry

Why continuous processing?

1. Reduced inventory — Inherently safer

2. Increased heat and mass transfer, allowing higher
heat removal rate and mixing efficiency

3. Higher thermal inertia of the equipment due to
higher mass/volume ratio of equipment including
cooling/heating system to reactive mass.

4. Smaller equipment footprint, possible lower
capital cost

This one is almost a “no brainer”




Process Development — Chemical Hazards Evaluation

Reformatsky Reagent
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The data showed a rapid increase in both temperature and
pressure of about 700°C/min and 50kPa/min respectively

o
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Process Development

Example issue — insufficient cooling following benzaldehyde addion
would give temperature excursion (even in continuous)

Two reactors in series

) Benzaldehyde CWS
provide: l
stribution of  esam” SOOKIIKAKK
1. Better distribution of  Reagent . .
heat across reactors lCWR
2. Better heat control
. Benzaldehyde CWS
3. Higher surface area to l
mass ratio . . l _ '><><><><><><><><><><><><' Reformatsky
4. Higher thermal inertia , , ~  Product
IR
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Bench Scale Reactor System

*  400kg/yr throughput




Bench Scale Reactor System

Phase
separation
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Zinc Reagent Formation
Activation




Abundance
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Results — a Happy Surprise

Batch 40ml

TIC: REF-100320118-0min.D

Continuous (10ml/min)
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Discussion

Benefits of continuous Reformatsky process:

1. Reduced inventory — Inherently safer
2. Increased volumetric heat transfer, giving more robust safety

case
3. High throughput - bench scale throughput is comparable to a
small/medium size batch plant
4. Higher selectivity and purity




Reformatsky learning

e Give or take some solids control issues the
process could readily be run continuously and
with ease

* |t allowed us to run a process we would not have
taken on at 60L scale and to produce at a
comparable rate

* There is a good business case — and encouraged,
we are now close to running continuous
Grignard including making the reagent




What we learned about

implementation and skills

 While at first the problems seemed daunting, with a
little determination they were resolvable

— Inexperienced technologists delivered successful
outcomes in realistic times and without excessive effort.

— Didn’t need to draw on advanced modeling or simulation.

— Good quality (standard) experimental and sound chemistry
/engineering sufficient.

* The set of equipment and skills we have are flexible

enough to take on a good range of processing
problems

— Continuous processing is within the capabilities of many
organisations

* Benefits are not automatic from “going continuous”.




SO WHAT ARE THE BROADER
IMPLICATIONS TO DEVELOPMENT?




The Innovation Process 2008

| have the
Effort skill base to
A do regularly
| can do,
but need a
business case

| need a
demo
| can see
what might
be done

Progress
since 06

Things co
Be better

Faciliues innovation is about here
Intensive / innovative / continuous processing is about here
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The Innovation Process 2013

| have the
Effort skill base to
A do regularly
| can do,
but need a

business case

| need a
demo
| can see
what might
be done

Things co
Be better

Faciliues innovation is about here
Intensive / innovative / continuous processing is about here
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That was fun, could we do it again?

e Delivery of a one-off project by specialists is
relatively easy with plenty of time

e Learning from them is harder
* Embedding as a way of working is difficult

» Skill set changes — adopting new skills where needed (modeling?
PAT for control?)

* Decision making process modifications
* Laboratory and pilot plant resources and capabilities

* Integration with other activities — SHE assessment, purchasing
and supply

e Cutting across organisational boundaries
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Two key Gaps

* Process understanding
— How much is enough?
— How to capture and exploit?

* Design methodology

— Organising the design activity to be fast and
efficient

— Minimising rework and cost




Gathering and processing
understanding

* Mathematical modelling / simulation

* Viable but very expensive in primary, reliant on good experimental
data

* Tools weak for secondary

 Statistics / OR techniques

* Links well to experimentation BUT
* Not understanding based and not design-friendly
* Too many variables (especially in secondary)

e Structured qualitative approaches

* Various in house and proprietary methods eg BRITEST

e Used to capture and exploit understanding in primary and
secondary processing
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Design methodology

 The Unit Operation approach?

— Represent (and even optimise) process as a set of well-
defined equipment-based operations. SUMS

— Much less effective for processes where the properties
that define a stream are complex and even undefined

 The way chemists put together a process

— Recipe-based, quite like cookery. LAB

— Overly experiential and experimental so likely to miss non-
obvious opportunities

 The “A Team” approach
— Put the best guys on it. LAB+SUMS+SMARTS
— Not feasible if you want to design a lot of processes




Conclusions

* The battle now is moving from the business
case to having an embedable, teachable
method

* Much underpinning work remains to be done
to provide the required understanding

— But it’s not seen as sexy

* There are still massive challenges in allowing
all developers to “see the big picture”

— But it is a massively difficult problem
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