

Summer School on Crystal Nucleation

Prof. Joop H. ter Horst

Please Turn off Your Mobile Phones

Fire Exit

European Federation of Chemical Engineering EFCE working party on crystallization

Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation

Strathclyde Institute of Pharmacy & Biomedical Sciences

British Association for Crystal Growth

Organizing Committee

Joop ter Horst Rene Steendam Andrew Dunn Olayinka Olalere Maria Briuglia

Objectives

- Bring together experts in the field of crystal nucleation
 - Small organic compounds (pharmaceuticals)
 - Proteins
 - Biominerals
- Lecture the state of the art on Crystal Nucleation to early stage and advanced researchers
 - Current crystal nucleation theories
 - Measurement methods and characterization tools
 - Fundamentals & applications

Lecturers

Joop ter Horst

• CMAC, University of Strathclyde

Peter Vekilov

• University of Houston

Roger Davey

• University of Manchester

Denis Gebauer

• University of Konstanz

Jan Sefcik

• CMAC, University of Strathclyde

Participant Background

Program

	Мо	Tue	Wed	Thu	Fri			
	20 June 2016	21 June 2016	22 June 2016	23 June 2016	24 June 2016			
00:00 10:00		L4: RD	L7: PV	L13: RD	L12: PV			
09.00 - 10.00	Registration & Coffee	Solution Chemistry and structure	Classical and non-classical nucleation mechanisms	Molecular routes to nucleation control	Classical and non-classical nucleation mechanisms			
10:00 - 11:00	-	Coffee	Coffee	Coffee	Coffee			
	L1: JtH	L5: JS	L8: DG	L11: DG	L10: JS			
11:00 - 12:00	Classical nucleation - History & Theory	Secondary nucleation	Mesocrystals and non- classical crystallization	Biomineralization and	Shear and laser induced			
12:00 - 13:00	a meory		clussical crystallization	bioininetics	Closuro			
13:00 - 14:00	lunch	lunch	lunch	•	closure			
14:00 - 15:00	L2: PV Thermodynamics of	L6: JtH Crystal nucleation	L9: RD Molecular Packing &					
15:00 - 16:00	Crystallization	measurements	Nucleation					
	Coffee			Excursion				
16:00 - 17:00	L3: DG The pre-nucleation cluster	Poster session / Lab tour	Poster session					
17:00 - 18:00	pathway							
Evening	Evening event							
Lunch w	ill be provided	Go out for lunch (see program booklet)		Packed lunch included				

Program

	Мо	Tue	Wed	Thu	Fri				
	20 June 2016	21 June 2016	22 June 2016	23 June 2016	24 June 2016				
09:00 - 10:00		L4: RD	L7: PV	L13: RD	L12: PV				
		Solution Chemistry and	Classical and non-classical	Molecular routes to	Classical and non-classical				
10:00 - 11:00	Registration & Coffee	structure	nucleation mechanisms	nucleation control	nucleation mechanisms				
		Coffee	Coffee	Coffee	Coffee				
11:00 - 12:00	L1: JtH	L5: JS	L8: DG	L11: DG	L10: JS				
	Classical nucleation - History	Secondary pudeation	Mesocrystals and non-	Biomineralization and	Shear and laser induced				
12:00 - 13:00	& Theory	Secondary nucleation	classical crystallization	biomimetics	Nucleation				
					Closure				
13:00 - 14:00	lunch	lunch	lunch	Т					
14:00 - 15:00	L2: PV	L6: JtH	L9: RD						
	Thermodynamics of	Crystal nucleation	Molecular Packing &						
15:00 - 16:00	Crystallization	measurements	Nucleation						
	Coffee			Excursion					
16:00 - 17:00	L3: DG								
	The pre-nucleation cluster	Poster session / Lab tour	Poster session						
17:00 - 18:00	pathway								
		T	T						
Evening	 Evening event 								
		<u> </u>							
Drygate Brewery Bar Poster session Posters & drinks Poster prize									
& CMAC Labtour & info on Excursion									

Program: Excursion

Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation

University of Strathclyde

Classical Nucleation Theory

Prof. Joop H. ter Horst

A Crystalline Product

- Crystal Form
- Crystal Size Distribution
- Crystal Purity
- Crystal Shape

Product properties

Industrial Suspension Crystallization

EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation

> Towards Continuous Manufacturing

J.H. ter Horst et al., Fundamentals of Industrial Crystallization, In: Nishinaga T, Rudolph P, editors, Handbook of Crystal Growth, Vol. II., Elsevier, 2015, pp. 1317–49.

Primary Crystal Nucleation

- Start of crystallization process
- Large impact on product quality aspects like Crystal Size Distribution, polymorphs

My Lecture:

Arrive at the expression for the nucleation rate using Classical Nucleation Theory

Classical Nucleation Theory

- → Nucleation is an Activated Process
 - Solubility & Supersaturation
 - Crystal Nucleation
 - Nucleation Work

Nucleation

Crystal Nucleation H₂O

Crystallization Characteristics

Clear point - Upon heating there is a temperature that a suspension turns into a clear solution

Cloud point - Upon cooling a solution there is a temperature that crystals will be detected

Metastable Zone Width - The difference between the saturation temperature (Clear point) and cloud point

Why is there a difference between clear and cloud point?

Slide 24

Activated process

1889

An **energy barrier** must be overcome before two molecules will react.

The Arrhenius equation gives a relation between the activation energy *W** and the reaction rate *J*.

$$J = A \exp\left(-\frac{W^*}{kT}\right)$$

Svante August Arrhenius 1859 –1927

Crystal Nucleation Rate

- Crystal Nucleation is an activated process
- There is an energy barrier for nucleation to occur: the nucleation work W^*
- The nucleation rate is the speed of formation of supernuclei per unit of time and volume
- This can be described by the Arrhenius equation

$$J = A \exp\left(-\frac{W^*}{kT}\right) \qquad [m^{-3}s^{-1}]$$

Crystal Nucleation Rate

This Lecture:

Arrive at the expression for the nucleation rate using Classical Nucleation Theory

$$J = A \exp\left(-\frac{W^*}{kT}\right)$$

It is not the destination, but the journey that matters

Understand how Classical Nucleation Theory is constructed

Classical Nucleation Theory

- Nucleation is an Activated Process
- ----- Solubility & Supersaturation
 - Crystal Nucleation
 - Nucleation Work

Solubility and Supersaturation

Find an expression for

The **driving force** for crystal nucleation

Crystallization methods

- To provoke crystallization the state of a solution is shifted from (under)saturated to supersaturated by an external action
- The nature of the external action determines the crystallization method
 - Crystallization from solution
 - Evaporative crystallization
 - Cooling crystallization
 - Anti-solvent crystallization
 - Precipitation
 - Melt crystallization

Crystal Solubility Binary Systems

Phenanthrene

Benzene

in

Intermolecular interactions between solute and benzene are essentially **identical** But **solubility is hugely different**

*x**=0.81 mol%

 $x^* = 20.7 \text{ mol}\%$

Anthracene

University of Strathclyde Science

~

Slide 32

Crystal Solubility Binary Systems

Phenanthrene

*x**=20.7 mol% *T*_m=100°C

in

Intermolecular interactions in Anthracene crystal are much larger than in Phenanthrene crystal:

Benzene

Anthracene prefers the solid phase

*x**=0.81 mol%

*T*_m=217°C

Anthracene

Crystal Solubility Binary Systems

Phenanthrene

Benzene

Solubility is determined by intermolecular interactions in both

University o

Science

Strathclyde

solution and solid

Anthracene

Solubility and Supersaturation

Find an expression for

The **driving force** for crystal nucleation

Which is

The **chemical potential difference** between the new phase and the old supersaturated phase

Solubility Diagram

Of isonicotinamide (INA) in Ethanol

Solubility

Solubility ideal system:

Fitting the solubility data of a real system:

$$\ln x^* = \frac{A}{T} + B$$

Van 't Hoff-plot

Of isonicotinamide (INA) in Ethanol

Fitting equation:

 $\ln x^* = \frac{A}{T} + B$

Convenient and accurate to extrapolate

Van 't Hoff-plot

Of isonicotinamide (INA) in Ethanol

Why is there a difference between ideal and real solubility?

Solubility

Ideal system

$$\ln x^* = -\frac{\Delta H}{R} \left(\frac{1}{T} - \frac{1}{T_m} \right)$$

Real system

$$\ln a^* = -\frac{\Delta H}{R} \left(\frac{1}{T} - \frac{1}{T_m} \right)$$

The activity coefficient y describes non-ideality

$$a = \gamma x$$

Of isonicotinamide (INA) in Ethanol

Of isonicotinamide (INA) in Ethanol

Of isonicotinamide (INA) in Ethanol

$$\Delta \mu = kT \ln \frac{a}{a_{eq}} = kT \ln S$$

Of isonicotinamide (INA) in Ethanol

The formation of a bulk new phase is associated with an energy release of 2.45 kJ/mol Slide 45

Supersaturated Bulk old phase Bulk new phase

The free energy difference between the more stable new phase and the supersaturated old phase:

 $\Delta \mu = RT \ln S$

Ostwald Rule of Stages

1897

In general it is not the most stable but the least stable polymorph that crystallizes first

Temperature

W. Ostwald,

Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung, *Zeitschrift für Physikalische Chemie* 22 (1897) 289–330.

Friedrich Wilhelm Ostwald 1853 –1932

Ostwald Rule of Stages

1897

In general it is not the most stable but the least stable polymorph that crystallizes first

The form obtained is a balance between **driving force** (thermo) and **Rate of barrier crossing** (kinetics)

W. Ostwald,Studien über die Bildung und Umwandlung fester Körper.1. Abhandlung: Übersättigung und Überkaltung,*Zeitschrift für Physikalische Chemie* 22 (1897) 289–330.

Slide 48

Friedrich Wilhelm Ostwald 1853 –1932

Solubility and Supersaturation

Find an expression for

The **driving force** for crystal nucleation

Which is

The **chemical potential difference** between the new phase and the old supersaturated phase

 $\Delta \mu = RT \ln S$

Classical Nucleation Theory

- Nucleation is an activated process
- Solubility & Supersaturation
- → Crystal Nucleation
 - Nucleation work

Understand the interplay between **Driving force** and **Interface**

Nucleation is the start of a phase transition

Density Fluctuations

Swarm of birds

Density Fluctuations

cause locally different and temporally fluctuating numbers of variously sized molecular clusters

In a **supersaturated** old phase, if the fluctuations are sufficiently large, a stable new phase can form.

Molecule

1878

Thermodynamic description of the condensation of supersaturated vapours into liquid droplets.

- **1. Density fluctuations** lead to new phase clusters
- New and old phase are separated by an **interface** region with intermediate structure and properties

Josiah Willard Gibbs 1839 – 1903

Bonding in the interface region is less strong than that in the bulk of the new phase cluster.

Molecules in the interface region have higher free energy compared to those in the bulk new phase.

The interface is associated with an **excess free energy**.

Josiah Willard Gibbs 1839 – 1903

- There is a thermodynamic driving force in the old phase to create **the new phase cluster of size** *n* $\Delta \mu = kT \ln S$ Free energy gain per cluster molecule
- The driving force is counterbalanced by the energy cost of creating the **interface**

 There is a thermodynamic driving force in the old phase to create the new phase cluster of size n

 $-n\Delta\mu$ contribution of cluster volume to free energy

 The driving force is counterbalanced by the energy cost of creating the interface

*G*_{excess} = f(cluster surface area, specific **interfacial energy**)

Density Fluctuation in a Supersaturated Old Phase

Molecule

CNT Assumption:

The interfacial energy of a cluster is equal to that of an infinitely flat surface.

Classical Nucleation Theory

- Nucleation is an activated process
- Solubility & Supersaturation
- Crystal Nucleation
- → Nucleation work

Find an expression for

The nucleation work W*,

the energy barrier for crystal nucleation,

As a function of the **supersaturation ratio S**

п

 ΔG_{c} *W** **n*** W(n) ΔG_{v} Cluster size

п

University

Science

Strathclyde

J.J. Thomson

1856 - 1940

Heterogeneous Nucleation of CO2 bubbles on a Mentos in Diet Coke

Effective interfacial energy γ_{ef} $\gamma_{\rm ef} = \Psi \gamma$ With activity factor $0 < \psi < 1$

 $\gamma_{\rm ef} = \psi \gamma$ with $\psi = 1$

V
Heterogeneous Nucleation

The heterogeneous particle provides a surface for nucleation

The nucleation work is much **lower** compared to homogeneous nucleation

The nucleation rate drastically increases

Nucleus size

Nucleus size $1 < n^* < 1000$ molecules

Nucleation work

The nucleation work (the energy barrier) is always smaller for Heterogeneous nucleation

Metastable zone width

Why is there a difference between clear and cloud point?

Because supersaturation is needed to overcome **the nucleation work** *W**

Cooling crystallization: Seeding

Slide 77

Classical Nucleation Theory

- Nucleation is an activated process
- Solubility & Supersaturation
- Crystal Nucleation
- Nucleation work
- → Nucleation kinetics
 - Crystal Nucleation Rate Measurements